BiMat : Start Guide

Cesar O. Flores, Timothée Poisot, Sergi Valverde, and Joshua S. Weitz
http://ecotheory.biology.gatech.edu

April 15, 2015

1 Description

This document contains the start guide for the BiMat library. An extended documentation of this library
can be located on: http://bimat.github.io/

1.1 Main Goal

The main goal of BiMat is to facilitate the analysis of nestedness and modularity of bipartite ecological
networks.

1.2 System Requirements

e MATLAB® 2011 or superior. BiMat may work in previous versions, but BiMat was not tested on them.

e The user is expected to have basic MATLAB® knowledge.

1.3 Functionality

BiMat is a MATLAB® library whose main function is the analysis of modularity and nestedness in bipartite
ecological networks. Its main features are:

e Modularity and nestedness analysis.
e Diversity analysis using Shannon and/or Simpson’s indexes.
e Different null models for the creation of random bipartite networks.

e Statistics values for helping the user to make inference about the structure of their networks (i.e.
percentile, z-score).

e Internal statistics of the modules (multi-scale analysis).
e Meta-Statistics analysis (useful when the user need to compare and analyze many bipartite networks).

e Drawing of bipartite networks in both matrix and graph layout.

1.4 Workflow
The workflow of the BiMat package can be visualized in Figure

http://ecotheory.biology.gatech.edu
http://bimat.github.io/

(" BiMat output)

text files ?

e [a3=

(BiMat Package

Algorithms

Modularity: Adaptive Brim
LP&Brim
Leading Eigenvalue

Nestendess: NODF
NTC

mat files

Bipartite objects

Statistics

Null Models: Eauiprobable
Degree Average

Row Average
Column Average

Extended Statistics: Meta-analysis
Multi-scale analysis

Figure 1: BiMat Workflow. The figure shows the main scheme of the BiMat package. BiMat can take matlab
objects or text files as main input. The input is analyzed mainly around modularity and nestedness using
a variety of null models. The user may also perform an additional multi-scale analysis on the data, or if he
have more than one matrix to perform a meta-analysis in the entire data. Finally, the user can observe the
results via matlab objects, text files, and plots.

2 Installation

2.1 Downloading BiMat

BiMat can be downloaded from the main developer website: http://bimat.github.io/.

2.2 Installing BiMat and adding it to the MATLAB® path

To install BiMat , copy the downloaded zip file to a directory of interest and unzip it. Next, you will need
to add BiMat to the MATLAB® path either temporally or permanently:

e Temporal path: Add the BiMat directory (and sub-directories) to the MATLAB® path. You can do
that by typing in the MATLAB® command line:

>>g=genpath(’bimat_directory_location’);
>>addpath(g) ;

You should replace bimat_directory_location with the full path to the directory in which you
installed BiMat .

e Permanent path: Alternatively, the user can update permanently (also temporally) by accessing the
MATLAB® path configuration. The path configuration can be accesed via menu File —>Set Path.

2.3 BiMat configuration: Options.m file

Most of the BiMat functions can work without the need of parameters by the user. However, if the user does
not specify the required arguments, BiMat will assume that default values will be used. These default values
are specified on the file main/Options.m that the user can modified according to his needs. A description
of each parameter with its default value is indicated below:

o Statistical Significance: A two-tail test is the default way of testing for significance in BiMat . Notice
that the user can perform a one-tail test by just duplicating the values below:

— P_VALUE = 0.05: The p-value for testing statistical significance using a percentile test approach.
Anything above the percentile 100%(1—p/2) will be significant, while anything below the percentile
100 (p/2) will be anti-significant.

— Z_SCORE = 1.96: The z-score for testing statistical significance using a z-test approach. Any-
thing above |z| will be considered significant, while anything below —|z| will be considered anti-
significant. z = 1.96 has been chosen in order to correspond to p = 0.05.

o Null Models:

— DEFAULT_NULL_MODEL = @NullModels.EQUIPROBABLE: The default function for creating random
networks.

— ALLOW_ISOLATED_NODES = true: When the network is sparse, a random network may be created
with nodes with no links at all (matrix with empty rows or columns). BiMat by default allow
this kind of random networks for performing the statistical test. However, the user may want
to change this value to false and like this avoid the creation of this kind of random networks.
However, the user must be aware that the time required for creating a random network without
empty nodes will growth with the sparsity of the matrix.

— TRIALS_FOR_NON_EMPTY_NODES = 1000: This value is only used when the user changes the value
of the previous parameter to false. In some extreme cases (a very sparse network), BiMat will
not be able to find a random network without empty nodes. Hence, in order to avoid infinite

http://bimat.github.io/

loops, BiMat will stop looking for them after the number of trials specified in this parameter. If
BiMat can not create a random network without empty nodes before this number of trials, BiMat
will just create a random network without this constraint and will print the next message in the
MATLAB® command line:

Warning: Not possible to create a matrix with non isolated nodes.
The random matrix was created without this constraint instead.
Consider to modify Options.ALLOW_ISOLATED_NODES and/or Options.INCLUDE_EMPTY_NODES

— INCLUDE_EMPTY_NODES = true: Sometimes the user may have data with empty nodes (a matrix
with empty rows and/or columns). Depending on the value of this parameter BiMat will chose
between keeping these nodes (true) or deleting them from the adjacency matrix (false). Further,
the user must be aware that including or not empty nodes will have an effect during the statistical
tests of his data.

— SWAP_FIXED_FACTOR = 100: This swap factor Sy is used for creating random networks using the
FIXED null model. The amount of performed random swaps in the matrix is Sy F, were E is the
number of edges.

— REPLICATES = 100: The amount of replicates that BiMat performs in order to test for statistical
significance. The value of 100 was chosen with the idea of getting quick results. However, the
user must be aware that this value is no appropriate for accurate testing. The right value will
depend on the kind of network (or networks) that the user is analyzing. It will depend mostly
in two quantities: the fill and the size of the adjacency matrix. Experience from the developers
indicate that if matrices are small ~ 10 x 10 the appropiate number is ~ 10,000, while for big
matrices ~ 200 x 200, the appropriate number is ~ 1,000. However, the right way for testing
the appropiate value is by looking and how the variance decrease as the number of replicates
increase. The variance stops decreasing considerably with the number of replicates, increasing
this last number does not have any effect on the statistical results.

e Algorithms: All the next parameters refer to algorithms behavior. The user can change the values
here, or he can change the parameters dynamically by modifying the corresponding properties in the
BipartiteModularity instance or Nestedness.

— OPTIMIZE_COMPONENTS = false: Modularity is a function that depends in the global information
of the network. However, sometimes, the user may have a network which is not connected (it has
isolated components). By using the default value false, BiMat will optimize the modularity value
at the entire adjacency matrix, while by using the value true, BiMat will optimize the modularity
at the component level. Optimizing at the component level may decrease the global modularity
value, thought the number of communities may increase and be more finner.

— MODULARITY_ALGORITHM = @AdaptiveBrim: BiMat has three algorithms for optimizing the mod-
ularity equation and hence find the module configuration of the network.

— NESTEDNESS_ALGORITHM = @NestednessNODF: BiMat has two metrics for evaluating nestedness.

— TRIALS_MODULARITY = 20: The results of the modularity algorithms depends strongly in some
initial random assignment of the communities. Therefore, BiMat restart the algorithm using this
amount of times.

2.4 Getting help

At any moment you can access help from the command line using any of the next commands:

e help class_name: For a summary of the class file (i.e. help StatisticalTest). This will summarize
all public and static methods and properties of the class. If you want to see private and/or protected
methods you can use the doc instead of the help command.

e help class_name.method_name: For a summary of what the methods does and what kind of argu-
ments it gets (i.e. help StatisticalTest.DoNulls).

e help class_name.property_name: For a summary of the property (i.e.
help StatisticalTest.replicates).

You can always replace help by the doc command.

3 Examples

This section include three different examples to introduce the user to the main features of BiMat . All the
code and data file can be found on the examples directory. For another the description of other examples
included in the same directory, please visit http://bimat.github.io/

e creating_networks.m. It shows and explains the required input for BiMat .

e moebus_study.m. An analysis of the Moebus phage-bacteria bipartite network. It shows how to use
the most important functions that are available to analyze a single matrix. This analysis include how
to calculate most of the results published on [3].

e phage_bacteria_meta_analysis.m. An analysis of a group of matrices that shows how to perform a
meta-statistics analysis. This example reproduce some of the results published on [2]. However, using
this template all the results can be reproduced with a little extra effort.

3.1 BiMat - Creating networks

This example will introduce the user to the input of BiMat . It explains what input is required and
how it is used by BiMat . This example is located on examples/creating _networks.m and make use
of examples/data/input_adja.txt and examples/data/input_matrix.txt files.

3.1.1 Contents

Add the source to the MATLAB® path

Bipartite class and main input

Optional input

Creating input for Bipartite class

Creating a Bipartite object from MATLAB® data
Creating a Bipartite object from text files

3.1.2 Add the source to the MATLAB® path

% Add the source to the matlab path

$Assuming that you run this script from examples directory
g = genpath('../"); addpath(g);

close all;

o

o N o o

3.1.3 Bipartite class (main class)

The Bipartite is the fundamental class of the BiMat software. This class works as a communication bridge
between all the available classes. Therefore, in order to work with BiMat we will always need to instantiate
at least an object of this class.

3.1.4 Required input

The required input of the Bipartite class is a MATLAB® matrix, where the rows will represent the node set
R and the columns the node set C, such that if the element matrix (i, j)>0 a link between node r; and c;
exist. This matrix input can contain only non-negative integers {0, 1,2, 3...}. However, at present, values
greater than 1 are only used for plotting purposes (e.g. color interactions according to weight) and
not in the existing algorithms (which only work using the boolean version of the matrix).

http://bimat.github.io/

3.1.5 Optional input

BiMat has two different types of optional input. The first type is for node labeling and the main use of it
will be for labeling row and column nodes during plotting. The input must be encoded in a cell of strings
for each set R and C nodes, such that each string in a cell corresponds to the label of a node. The size of
such cells must corresponds to the number of nodes.

The second type of input consist of the type of node for either row and column nodes. For an example
of type of nodes consider a bipartite network where R and C represent pollinators and plants respectivally.
In turn pollinators can be classified in birds and insects, which will be the classification for set R. The
information of this classification is useful to explain modularity in terms of node classification. You can
consult the Moebus study example for additional details. The classification input must be vectors of the
same size than the number of nodes in rows and columns. The values must be positive integers {1,2,3, ...}
that represents the classification class of each node.

3.1.6 Creating input for Bipartite class

Here will show an example of the simplest way of creating a Bipartite object. We will create a bipartite
networks using a MATLAB® matrix as input of the Bipartite object. This synthetic data matrix represents
the interactions between a set of pollinators (rows) and a set of plants (columns). matrix(i,j)>0 means
that pollinator ¢ pollinates plant j with strength matrix(i,j).

46 %Creating the data

47 matrix = [2 0 2 2;

48 122 1;.
49 2 00 2;.
50 012 2;...
51 001 031;

52 % For the next variables observe that the size of matrix 5x4 correlates with
53 % them

54 row_labels = {'insect 1', '"insect 2', 'insect 3', 'bird 1', 'bird 2'};

55 col_labels = {'flower 1', 'flower 2', 'grass 1', 'gras 2'};

56 %Notice that as long as each kind is represented by a diferented positive

57 %$integer you will be fine.

58 row_.ids = [1 1 1 3 37];

59 S$Notice that 1 in col_ids not necessearly corresponds to 1's in row-ids.

60 col_ids = [1 1 5 5];

3.1.7 Creating a Bipartite object from MATLAB® data

Using the data we just created we can now create our Bipartite object:

64 bp = Bipartite (matrix);

65 bp.row_labels = row_labels;
66 bp.col_labels = col_labels;
67 bp.row_class = row_ids;
68 bp.col_class = col_ids;

3.1.8 Creating a Bipartite object from text files

An additional way of creating data is by using the static functions from the Reading.m class. Currently two
different formats are available. The first input format will contain only the information of the adjacency
matrix (you will need to add row/column labels and classification id’s if you need). A file example for
creating the last data is on examples/data/input_matrix.txt, which contains:

O O N~ N
O, ON O
= N O NN
O NN~ N

The last format input can be called using:

84 bp = Reader.READ_BIPARTITE_MATRIX('input-matrix.txt');
85 % We need to add labels and classification ids by ourselves

86 bp.row_-labels = row_labels;
87 bp.col_labels = col_labels;
88 bp.row.class = row_ids;
89 bp.col_class = col_ids;

The second input format consist on writing the adjacency list. This input format will read also the row
and column node labels. However if you need ids for the classification you will need to add by yourself. An
example for the last data format is located on examples/data/input_adja.txt and is shown below:

insect_1 2 flower_1
insect_1 2 grass_1
insect_1 2 grass_2
insect_2 1 flower_1
insect_2 2 flower_2
insect_2 2 grass_1
insect_2 1 grass_2
insect_3 2 flower_1
insect_3 2 grass_2

bird_1 1 flower_2
bird_1 2 grass_1
bird_1 2 grass_2
bird_2 1 grass_1

The middle column is optional. If it is not used, the reading function will assume that is composed of
ones only. We can now just call:

112 bp = Reader.READ_ADJACENCY_LIST ('input.-adja.txt.");
113 % Wee need to add classification ids by ourselves
114 bp.row._class = row-ids;

115 bp.col_class = col_ids;

Now that you know how to create a network object, you can proceed to the next example that shows
how to perform a complete analysis in a bipartite network.

3.2 BiMat Use case using Moebus cross-infection matrix data

This example will introduce the user to the most basic features of the BiMat Software. In order to do
that we will calculate some of the results presented on the Flores et al 2012 paper (Multi-scale structure
and geographic drivers of cross-infection within marine bacteria and phages) [3]. We will show how to
plot, evaluate modularity and nestedness, and perform some statistics at the global and internal modular
structure.

This example is located on examples/moebus_study.m and makes use of
examples/data/moebus_data.mat data file.

3.2.1 Contents

Add the source to the MATLAB® path
Creating the Bipartite network object
Calculating Modularity

Calculating Nestedness

Plotting in Matrix Layout

Statistical analysis in the entire network
Statistical analysis of the internal modules

3.2.2 Add the source to the MATLAB® path

10 %Assuming that you run this script from examples directory
11 g = genpath('../"); addpath(g);
12 close all; %Close any open figure

We need also to load the data from which we will be working on:

15 load moebus_data.mat;

The loaded data contains the bipartite adjacency matrix of the Moebus and Nattkemper study [4],
where 1’s and 2’s in the matrix represent either clear or turbid lysis spots. It also contains the labels for
both bacteria and phages and their geographical location from which they were isolated across the Atlantic

Ocean.

3.2.3 Creating the Bipartite network object

23 bp = Bipartite (moebus.weight matrix); % Create the main object
24 bp.row_-labels = moebus.bacteria_labels; % Updating node labels

25 bp.col_labels = moebus.phage_labels;

26 bp.row_class = moebus.bacteria_stations; % Updating node ids

27 bp.col_class = moebus.phage_stations;

We can print the general properties of the network with:

30 bp.printer.PrintGeneralProperties();

General Properties

Number of species: 501
Number of row species: 286
Number of column species: 215
Number of Interactions: 1332
Size: 61490
Connectance or fill: 0.022

3.2.4 Calculating Modularity

The modularity algorithm is encoded in the property community of the Bipartite object (bp.community).

Tree algorithms are available:

1. Adaptive BRIM (AdaptiveBrim.m)
2. LP&BRIM (LPBrim.m)
3. Leading Eigenvector (NewmanAlgorithm.m)

Each algorithm optimizes the same modularity equation [I] for bipartite networks using different ap-
proaches. Only the Newman algorithm return the same result. The other two perform at some point
random module pre-assigments, and by consequence they may not return the same result in each call. The
default algorithm is specified on Options.MODULARITY_ALGORITHM. However, we can assign another algo-
rithm dynamically. Here, for example, we will use the Newman’s algorithm (Leading eigenvector):

47 bp.community = LeadingEigenvector (bp.matrix);

48 % The next flag is exclusive of Newman Algorithm and what it does is to
49 % performn a final tuning after each sub—division (see Newman 2006) .

50 bp.community.DoKernighanLinTunning = true; % Default value

We need to calculate the modularity explicitly by calling:

53 bp.community.Detect ();

If Options.PRINT_RESULTS is true, the last call will print the next lines:

Modularity:
Used algorithm: LeadingEigenvector
N (Number of modules): 48
Qb (Standard metric): 0.7956
Qr (Ratio of int/ext inter): 0.8348

If we are interested in node module indexes too, we can use bp.community.row modules and
bp.community.col modules. We can also access directly the modularity values by calling bp.community.Qb
or bp.community.Qr as the next example:

60 fprintf('The modularity value Qb is %f\n', bp.community.Qb);
61 fprintf ('The fraction inside modules Qr is %f\n',bp.community.Qr);

The modularity value Qb is 0.795611
The fraction inside modules Qr is 0.834835

The value 0 < @ < 1 is calculated using the standard bipartite modularity function (introduced by
Barber) [I] while the value @, is an a posteriori represents the fraction of interactions that fall inside
modules [5].

3.2.5 Calculating Nestedness

The nestedness algorithm is encoded in the property nestedness of the Bipartite object (bp.nestedness).
Currently, two algorithms (metrics) are available:

1. Nestedness Temperatur Calculator NTC (NestednessNTC.m)
2. NODF (NestednessNODF.m)

Contrary to modularity (where each algorithm optimizes the same metric), these algorithms use different
metrics to calculate nestedness. Therefore, the statistical significance of a network will depend not only
in which null model but also in which metric (algorithm) is used. As the modularity case, the default

10

nestedness algorithm that BiMat uses is specified in Options.NESTEDNESS_ALGORITHM. The user can also
switch the algorithm dinamically as we show for modularity. However, here we will just use the default
algorithm by calling:

86 bp.nestedness.Detect();

As the modularity case, BiMat will return the next output if Options.PRINT_RESULTS is true:

Nestedness NODF:

NODF (Nestedness value): 0.0341
NODF (Rows value): 0.0368
NODF (Columns value): 0.0293

Finally the user can access directly the value of nestedness as in the following line:

93 fprintf ('The Nestedness value is %f\n', bp.nestedness.N);

The Nestedness value is 0.034053

To finish this section, we can summarize both modularity and nestedness results by calling:

96 bp.printer.PrintStructureValues();

Modularity:
Used algorithm: LeadingEigenvector
N (Number of modules): 48
Qb (Standard metric): 0.7956
Qr (Ratio of int/ext inter): 0.8348
Nestedness NODF:
NODF (Nestedness value): 0.0341
NODF (Rows value): 0.0368
NODF (Columns value): 0.0293

3.2.6 Plotting in Matrix Layout

You can print the layout of the original, nestedness, and modular sorting. If you matrix is weighted in a
categorical way using integers (0,1,2...) you can visualize a different color for each interaction, where 0 is
no interaction. For using this functionality you need to assign a color for each interaction and specifically
indicate that you want a color for each interaction before calling the plot function (otherwise default colors
will be used):

105 figure(l);

106 % Matlab command to change the figure window;

107 set (gcf, 'Position', [0 72 1751 9221);

108 bp.plotter.font_size = 2.0; %Change the font size of the rows and labels
109 % Use different color for each kind of interaction

110 bp.plotter.use_type_interaction = true; %

111 bp.plotter.color_interactions(l,:) = [1 0 0]; %Red color for clear lysis
112 bp.plotter.color_interactions(2,:) = [0 0 1]; %Blue color for turbid spots
113 bp.plotter.back.color = 'white';

114 % After changing all the format we finally can call the plotting function.
115 bp.plotter.PlotMatrix();

11

Figure 2: Original sorted matrix. Blue and red cells represent different strengths of infection between virus
and bacteria. Rows and columns represent bacteria and phages, respectively.

For plotting the nestedness matrix you may decide to use or not an isocline. The nestedness pattern is

just the matrix sorted in decreasing degree for row and column nodes.

figure (2);

% Matlab command to change the figure window;

set (gcf, 'Position', [0+50 72 932 9221);

bp.plotter.use_isocline = true; %$The NTC isocline will be plotted.
bp.plotter.isocline_color = 'red'; %Decide the color of the isocline.

bp.plotter.PlotNestedMatrix () ;

For plotting the modularity sort, lets use the example to introduce the user to an interesting modularity

property which is optimize_by_component. This property forces the modularity algorithms to optimize
modularity in each component:

12

Figure 3: Nested sorted matrix. Blue and red cells represent different strengths of infection between virus
and bacteria. In a perfectly nested pattern of the same fill than the current matrix, all the interaction cells

will lay above the isocline (red line).

132

% independently of each other:

figure (3);
% Matlab command to change the figure window;
set (gcf, 'Position', [0+100 72 1754 9221);

% First, lets optimize at the total matrix (default behavior)
subplot (1,2,1);

bp.community = LPBrim(bp.matrix); %Uses LPBrim algorithm
bp.plotter.use_isocline = true; %Although true is the default value
bp.plotter.PlotModularMatrix () ;

title(['S0O = $',num2str (bp.community.Qb),' $c = $', num2str (bp.community.N)], ...

'interpreter', 'latex', 'fontsize',23);

o° o

Now, we will optimize at the graph component level.

13

145
146
147
148
149

151
152

subplot (1,2,2);

bp.community = LPBrim(bp.matrix);

bp.community.optimize_by_component = true; % optimize by components

bp.plotter.PlotModularMatrix () ;

title(['SQO = $',num2str (bp.community.Qb),' S$Sc = $', num2str (bp.community.N)], ...
'interpreter', 'latex', 'fontsize',23);

% Move right panel to the left

set (gca, 'position', get (gca, 'position')—[0.07 0 0 01);

Q =0.78503 ¢ =58 Q =0.73039 ¢ =67

Figure 4: Modular sorting in matrix layout. Blue and red cells represent different strengths of infection
between virus and bacteria. Each block represent a different module. Left panel shows the default behavior
(optimize at the total matrix), while right panel shows the component optimization. Generally the second
case will have better resolution but smaller global modularity value. LPBrim was used for optimizing the
modularity function in both cases.

Finally, the user can play with use_isocline, use_type_interactions, use_type_interaction, and
use_module_format to create interesting visualizations:

157 figure (4);

158 set (gcf, 'Position', [0+150 72 1754 9221);

159 % First, lets come back to use the LeadingEigenvector algorithm
160 bp.community = LeadingEigenvector (bp.matrix);

161 %
162 subplot(1,2,1);

163 bp.plotter.use_isocline = false;

164 bp.plotter.use_type_interaction = false;
165 bp.plotter.PlotModularMatrix();

o

166 S

14

167 subplot(1,2,2);

168 % Isocline and divisions will not have the same color than modules
169 bp.plotter.use.module_format = false;

170 bp.plotter.use_isocline = true;

171 bp.plotter.isocline_color = 'red';

172 bp.plotter.division_.color = 'red';

173 bp.plotter.back_color = [0 100 180]/255;

174 bp.plotter.cell_color = 'white';

175 bp.plotter.PlotModularMatrix();

176 % Move right panel to the left

177 set (gca, 'position',get (gca, 'position')—[0.07 0 0 01]);

Figure 5: Modular sorting in matrix layout. The user can play with the plotter properties in order to create
interesting matrix layout formats. LeadingFEigenvector was used for optimizing the modularity function in
both cases.

3.2.7 Plotting in graph layout

Plotting in graph layout use the same three functions than matrix layout. You just need to replace the part
Matrix in the function name by Graph. For example, for plotting the graph layout of modularity we will
need to type:

184 figure (6);
185 % Matlab command to change the figure window;
186 set (gcf, 'Position', [19+800 72 932 9221);

187 bp.plotter.PlotModularGraph () ;

15

Figure 6: Modular graph layout. Nodes and interactions are colored according to the module they belong to.
Black color is used for interaction across modules. Left and right side nodes represent bacteria and phages,
respectively.

3.2.8 Statistical analysis in the entire network

We can perform an statistical analysis in the entire network for nestedness and modularity. In order to make
an statistical analysis of the structure values we need to decide how many replicates we will need and what
null model is more convenient for what we need. File NullModels.m contain all the available null models,
while file StatisticalTest.m contains all the functions required for performing this analysis. The current

16

null models are:

NullModels. EQUIPROBABLE , P;; = E/(mn) — the connectance of the network is respected, but not
the number of interactions in which each node is involved.

NullModels. AVERAGE , P;; = (k;/n+ d;/m)/2 — the connectance, and the expected number of inter-
actions in which each node is involved, are respected

NullModels. AVERAGE_COLS |, P;; = k;/n — the connectance, and the expected number of interactions
of row nodes, are respected

NullModels. AVERAGE_ROWS |, P;; = d;/m — the connectance, and the expected number of interac-
tions of column nodes, are respected

NullModels.FIXED - this model creates random matrices that respect the total sums of each row and
column of the bipartite adjacency matrix. It uses a random swapping algorithm.

To perform the statistical analysis of all the structure values we can just type
bp.statistics.DoCompleteAnalysis(), which will perform an analysis using the default number of
random matrices (Options.REPLICATES) and the default null model (Options.DEFAULT_NULL_MODEL).
However, here we will chose directly those parameters:

216 % Do an analysis of modularity and nestedness values using 100 random
217 % matrices and the EQUIPROBABLE (Bernoulli) null model.
218 bp.statistics.DoCompleteAnalysis (100, @NullModels.EQUIPROBABLE) ;

Creating 100 null random matrices...
Performing NODF statistical analysis...
Performing Modularity statistical analysis...
Performing NTC statistical analysis...

The last function call printed information about the current status of the simulation. For printing the
results we need to call:

222 % Both calls print the same information

223 bp.printer.PrintStructureStatistics(); %Print the statistical wvalues
224 Dbp.statistics.Print(); %$Print the statistical values
Modularity
Used algorithm: LeadingEigenvector
Null model: NullModels.EQUIPROBABLE
Replicates: 100
Qb value: 0.7951
mean: 0.4403
std: 0.0050
zZ-score: 71.2951
percentil: 100.0000
Qr value: 0.8333
mean: 0.1082
std: 0.0214
zZ-score: 33.8450
percentil: 100.0000
Nestedness

17

Used algorithm: NestednessNODF

Null model: NullModels.EQUIPROBABLE
Replicates: 100
Nestedness value: 0.0341
mean: 0.0240
std: 0.0006
zZ-score: 16.5544
percentil: 100.0000

The printed information is as follows:

e Used algorithm: The algorithm that was used for calculating the metric.
e value: value to be tested (e.g. nestedness or modularity).

e replicates: number of replicates used during testing.

e mean: mean of the replicate values.

e std: standard deviation of the replicate values (note that distributions of network values are not
necessarily well described by a normal distribution).

e zscore: The z-score of value assuming that the replicate values represent the entire population.

e percentile: The percentage of replicate values that are smaller than value.

Additional information that can be acceded via code includes the mean, standard deviation, and ¢-test
results. Be aware that the number of replicates is especially critical parameter for the results of the statistical
analysis. To chose this number consider the size and fill of the matrix. As a rule of thumb, 100 works fine
as quick analysis, and 10,000 for a more accurate result (up to a matrix size of 300 by 300).

3.2.9 Statistical Analysis of the internal modules

In addition to be able to perform structure analysis in the entire network, we may be able (depending in the
size and module configuration of the tested matrix) to perform a structural analysis in the internal modules.
We will show next (i) how to do an analysis of modularity and nestedness in the internal modules and (ii)
how to test for a possible correlation between node labeling and module configuration. All the functions for
performing this kind of analysis is encoded in file InternalStatistics.m. For calculating the statistical
structure of the internal modules we just need to call:

250 % 100 random matrices using the EQUIPROBABLE null model.
251 Dbp.internal_statistics.TestInternalModules (100, @NullModels.EQUIPROBABLE) ;

The last function call will print information about what is the current matrix (module) that is being
evaluated. Like this, the user knows at every moment the current status of the analysis:

Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:

~N O O WN =

and so on .

18

Finally, to print the results we just need to call:

254 Dbp.printer.PrintStructureStatisticsOfModules(); % Print the results

Network, Qb,Qb mean,Qb z-score,Qb percent, Qr, Qr mean,Qr z-score,Qr percent, N, N mean,N z-score,N percent
1,0.28198,0.25424, 3.052, 100, 0.4052,-0.0090706, 8.6901, 100,0.53237,0.29431, 18.7592, 100
2,0.38344,0.28069, 8.11, 100, 0.59091, 0.082727, 8.7795, 100,0.37935,0.33732, 1.8029, 96
3,0.36091, 0.2856, 8.3161, 100, 0.3361, 0.022075, 5.3604, 100,0.36098,0.24427, 9.3941, 100
4, 0.495,0.40179, 4.61, 100, 0.66667, 0.29133, 5.7683, 100,0.34029,0.22005, 5.0641, 100
5,0.34295,0.25917, 6.5907, 100, 0.5614, 0.042982, 9.5962, 100,0.42548,0.37412, 1.9607, 98
6,0.37778, 0.311, 2.1714, 100, 0.6, 0.28533, 2.0792, 98,0.38468,0.37225, 0.21945, 55
7,0.49146,0.33043, 7.2185, 100, 0.91837, 0.20245, 8.548, 100,0.25255,0.33147, -1.695, 3
8,0.16272,0.18724, -1.7281, 3, 0.30769, 0.15, 1.1627, 83,0.76951,0.56351, 3.8483, 100
9,0.22222,0.17667, 1.5673, 90, 0.55556, 0.38444, 1.4824, 96,0.46154,0.56869, -1.0421, 14

10,0.10526,0.11098, -0.45415, 16, 0.21053, 0.21895, -0.1065, 7,0.66822, 0.6694,-0.013412, 45
11,0.48148,0.37346, 2.1981, 99, 0.77778, 0.41222, 2.5832, 98, 0.2483,0.31196, -1.0607, 10
12,0.13173,0.15876, -2.3413, 1,-0.052632, 0.1193, -1.2618, 6,0.74994,0.60985, 2.4645, 100
13, 0.4,0.30636, 1.9125, 97, 0.86667, 0.40667, 2.7075, 99,0.41398,0.40417, 0.092677, 55
14,0.06414,0.11336, -4.8795, 0, 0.55102, 0.2102, 3.7813, 100,0.38596,0.66925, -3.7248, 1
15, 0.25,0.20938, 0.97224, 81, 0.5, 0.31, 0.73365, 44,0.44444,0.61944, -0.84654, 11
16, 0, o, Nal, o, 1, 1, Nal, 0, o, 0, Nal, 0
17,0.16327,0.14531, 0.88196, 44, 0.42857, 0.42857, Nal, 0,0.66667,0.66667, 0.99499, 0
18, 0, 0, Nal, o, 1, 1, Nal, 0, 0, 0, Na, 0
19, 0, 0, Nall, 0 1, 1, Nal, 0, 0, 0, Nal, 0
20, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
21, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
22, 0, o, Nal, 0 1, 1, Nal, 0, 0, o, NaN, 0
23, 0, o, NaN, 0 1, 1, NaN, 0, o, o, NaN, 0
24, 0, o, NaN, 0 1, 1, NaN, 0, o, o, NaN, 0
25, 0, 0, NaN, 0 1, 1, Nal, 0, 0, 0, Nal, 0
26, 0, o, Nal, 0 1, 1, Nal, 0, o, o, Nal, 0
27, 0, o, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
28, 0, o, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
29, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
30, 0, 0, Nall, 0 1, 1, Nal, 0, 0, 0, Nal, 0
31, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, NaN, 0
32, 0, o, Nal, 0 1, 1, Nal, 0, 0, 0, NaN, 0
33, 0, 0, Nal, o, 1, 1, Nal, 0, 0, 0, NaN, 0
34, 0, o, NaN, o, 1, 1, NaN, 0, o, o, NaN, 0
35, 0, o, NaN, 0 1, 1, NaN, 0, o, o, NaN, 0
36, 0, 0, NaN, 0 1, 1, NaN, 0, 0, o, NaN, 0
37, 0, 0, NaN, 0 1, 1, Nal, 0, o, o, Nal, 0
38, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, NaN, 0
39, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
40, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0
41, 0, 0, Nall, 0 1, 1, Nal, 0, 0, 0, Nal, 0
42, 0, 0, Nall, 0 1, 1, Nal, 0, 0, 0, Nal, 0
43, 0, o, Nal, 0 1, 1, Nal, 0, 0, o, NaN, 0
44, 0, o, Nal, o, 1, 1, NaN, 0, o, 0, NaN, 0
45, 0, o, Nal, o, 1, 1, NaN, 0, o, o, NaN, 0
46, 0, o, NaN, 0 1, 1, Nal, 0, o, o, NaN, 0
47, 0, 0, NaN, 0 1, 1, NaN, 0, 0, 0, NaN, 0
48, 0, o, Nal, 0 1, 1, Nal, 0, o, o, Nal, 0
49, 0, 0, Nal, 0 1, 1, Nal, 0, 0, 0, Nal, 0

The module indexing is in the same order that the plotted modularity matrix, in which Network 1
corresponds to the one located at the top right of Figure 5] This last created table shows the same values
previouslly described. However it is specially usefull for describing some of the possible results that the user
may get at some point. What follows summarize some of the important points:

e NaN values appear in many of the z-scores. The reason of those values is because they are fully
connected and mostly composed of only one node of each type (a matrix of size 1 x 1. Therefore
only one permutation of the matrix exist and by consequence all the random matrices have the same
structure than the one being analyzed. This makes the standard deviation to be 0, and therefore the
z-score to be 0/0 = NaN.

We can also study if a correlation exists between the row labeling and the module configuration. For
performing this analysis we always will need a classification for rows and/or columns that group them in
different sets. In this case we have as labeling the station number from which the bacteria and phages
were extracted. Therefore what we will study is if there exist a correlation between the station location
(geography) and the module configuration. We will use the same method that was used in Flores et al 2012
[B]. Given the labeling this method calculates the diversity index of the labeling inside each module and
compare it with random permutations of the labeling across the matrix.

266 %Using the labeling of bp and 1000 random permutations
267 bp.internal_statistics.TestDiversityRows (1000) ;

19

[

268 % Using specific labeling and Shannon index

269 bp.internal_statistics.TestDiversityColumns(...

270 1000, moebus.phage_stations, @Diversity.SHANNON_INDEX) ;
271 %Print the information of column diversity

272 bp.printer.PrintColumnModuleDiversity () ;

Diversity index: Diversity.SHANNON_INDEX
Random permutations: 1000
Module,index value, =zscore,percent

1, 2.4873, -1.9465, 2.6
2, 1.9722, -1.5477, 4.6
3, 2.2497, -5.9225, 0
4, 1.4791, -6.0072, 0
5, 1.8174, -5.9413, 0
6, 1.6094, 0.57569, 27.3
7, 1.0906, -8.7094, 0
8, 1.0042, -6.007, 0
9, 1.4942, -2.9247, 0.5
10, 1.7479,-0.41875, 12.4
11, 0.45056, -8.4223, 0
12, 1.7678, -2.8444, 0.5
13, 1.3322, -1.2948, 2.3
14, 1.677, -2.4976, 0.5
15, 1.0397, -2.0919, 0.6
16, 1.0986, 0.28398, 7.8
17, 0, NaN, 0
18, o, NaN, 0
19, o, NaN, 0
20, 0.63651, -2.8875, 0
21, o, NaN, 0
22, 0, NaN, 0
23, 0, -5.6834, 0
24, 0.69315, 0.20402, 4
25, o, NaN, 0
26, 0, -4.8339, 0
27, o, NaN, 0
28, o, NaN, 0
29, o, NaN, 0
30, o, NaN, 0
31, o, NaN, 0
32, o, NaN, 0
33, o, NaN, 0
34, o, NaN, 0
35, o, NaN, 0
36, o, NaN, 0
37, o, NaN, 0
38, o, NaN, 0
39, 0, NaN, 0
40, o, NaN, 0
41, o, NaN, 0
42, o, NaN, 0
43, o, NaN, 0

20

44, 0, NaN, 0
45, 0, NaN, 0
46, 0, NaN, 0
47, 0, NaN, 0
48, 0, -5.8889, 0

Using a one tailed p-value of 0.05 we can see that 1-5,7-9,11-15 are not as diverse as random labeling and
conclude that those modules have phages that were isolated from similar locations. The module indexing is
in the same order that the plotted modularity matrix, in which module 1 corresponds to the one located at
the top of the plot. The NaN values happens because such modules have only a single phage and therefore
the standard deviation used for calculating the z-score is 0.

Before finishing this example, we must say that in order to analyze the statistical significance of nestedness
and modularity of the internal modules, what BiMat is really performing is a meta analysis. This functionality
is encoded in the class MetaStatistics. This class makes use of the class MetaStatisticsPlotter to create
interesting visualization of the matrices being analyzed. We show how to use this functionality in the next
example.

3.3 BiMat - Meta-Statistics Example

This example will introduce the user to the features about how to perform an statistical analysis of a group
of bipartite networks (matrices). For doing that we will use the data from Flores et Al 2011. This data
consist of 38 bipartite adjacency matrices of different sizes. Each matrix is named according to the first
author paper from which it was extracted. We will perform an analysis of modularity and nestedness in the
entire set.

This example is located on examples/group_matrices.m and make use of
examples/phage_bacteria_meta_analysis.mat data file.

3.3.1 Contents

e Add the source to the MATLAB® path

e Creating a MetaStatistics object

e Perform an statististical analysis in the set of matrices

e Using a MetaStatistics object to create your own plots

3.3.2 Add the source to the MATLAB® path

11 %Assuming that you run this script from examples directory
12 g = genpath('../"); addpath(g);
13 close all; %close all open figures

We need also to load the data from which we will be working on

16 load phage.bacteria.matrices.mat; ‘

The loaded data is a set of 38 matrices together with a name that refer to the first author and year from
the paper from which the matrix was extracted. These matrices were published by Flores et Al 2011 [2].

3.3.3 Creating a MetaStatistics object

If the number of random matrices and the null model are not assigned, 100 and AVERAGE are used as
default. Here we will use 100 random matrices with the EQUIPROBABLE null model

21

o

22 mstat = MetaStatistics (phage_bacteriamatrices.matrices); % Create the main object

3.3.4 Perform an statistical analysis in the set of matrices

Suppose that we are interested in calculating the modularity and nestedness using the NTC algorithm as
Flores et Al 2011 did. In addition, following the approach of Flores et Al 2011 [2], we want to use the
equiprobable model as null model in our random networks. The way to perform this analysis is by running
the next lines:

30 mstat.replicates = 100; %How many random networks we want for each matrix
31 mstat.null_model = @NullModels.EQUIPROBABLE; %Our Null model

32 mstat.modularity._algorithm = @AdaptiveBrim; %$Algorithm for modularity.

33 mstat.nestedness_algorithm = @NestednessNTIC; $Algorithm for nestedness.
34 mstat.do_community = 1; % Perform Modularity analysis (default)

35 mstat.do-nestedness = 1; % Perform Nestedness analysis (default)

36 mstat.names = phage_bacteriamatrices.name;

37 mstat.DoMetaAnalyisis(); % Perform the analysis.

Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:
Testing Matrix:

and so on

~NOo Ok WwN -

Notice that DoMetaAnalysis method prints information about the current networks that is being ana-
lyzed, such that the user will know at every moment the current status of the analysis. After the analysis
is finished a simple statistical measure to say that a matrix is nested and/or modular is to chose a two tail
p-value = 0.05 as Flores et al 2011 did. Therefore, the next lines of code will show how many matrices are
found nested and/or modular

46 fprintf ('Number of nested matrices: %i\n',sum(mstat.N_values.percentile > 97.5));
47 fprintf ('Number of modular matrices: %i\n',sum(mstat.Qb_values.percentile > 97.5));

Number of nested matrices: 29
Number of modular matrices: 6

Because we only did 100 random matrices you may get different results. For a more accurate result you
may try 1.000 or even 10,000. Finally we can show detailed results for the entire set of matrices:

53 mstat.Print ();

Network, @b, Qb mean,Qb z-score,Qb percent, Qr, Qr mean,Qr z-score,Qr percent, N, N mean,N z-score,N percent
1, 0.30992, 0.24599, 2.5886, 99, 0.81818, 0.16636, 3.9627, 100,0.60166, 0.678, -0.75945, 24
2, 0.2144, 0.21253, 0.10036, 54, 0.44, 0.1024, 1.9222, 92,0.73351,0.69341, 0.37149, 66
3, 0.17556, 0.22576, -1.6619, 4, 0.13333, 0.12467, 0.055595, 55,0.99999,0.66398, 3.9396, 100
4, 0.22449, 0.24862, -0.86772, 12, -0.14286, 0.20143, -1.9187, 0,0. 74326, 1.3936, 91
5, 0.25652, 0.27901, -1.2848, 8, 0.074074, 0.11037, -0.35654, 32,0. ,0.52014, 6.1977, 100
6, 0.2699, 0.2936, -0.68086, 26, 0.76471, 0.24, 3.0418, 99,0. ,0.67532, 0.72106, 79
7, 0.21403, 0.21669, -0.143, 40, 0.58621, 0.10552, 2.9076, 99,0.95766,0.67737, 2.5286, 100
8, 0.174, 0.19425, -3.1699, 0, -0.15789,-0.064737, -1.2478, 1,0. 42858, 7.2945, 100
9, 0.21718, 0.23151, -1.4067, 9,-0.033898,-0.028136, -0.075524, 31,0. 43517, 6.8795, 100

10, 0.29191, 0.2811, 0.48576, 67, 0.28205, 0.17436, 0.85949, 70,0. ,0.55895, 1.2204, 91
11, 0.24033, 0.29148, -2.5914, 0, 0.21951, 0.16439, 0.44398, 64,0.68685,0.55609, 1.6116, 93

22

12, 0.4821, 0.40073, 2.8901, 100, 0.67568, 0.27568, 3.8592, 100,0.86948,0.64357, 2.7302, 100
13, 0.32099, 0.30988, 0.20222, 45, 0.11111, 0.34222, -1.057, 3,0.74467,0.76221, -0.13176, 46
14, 0.31667, 0.20973, 3.2725, 100, 0.63333, 0.38867, 4.0298, 100,0.78116, 0.643, 3.0432, 100
15, 0.20023, 0.20669, -0.79464, 26, 0.20548,-0.044384, 3.3436, 100, 0.7313,0.42032, 6.9832, 100
16, 0.18956, 0.18757, 0.37716, 65,-0.033493, -0.18445, 2.4474, 99,0.80411,0.33195, 14.855, 100
17,0.045608,0.040801, 2.5875, 99, -0.43931,-0.024509, -6.2235, 0,0.99822,0.90924, 3.0789, 100
18, 0.1231, 0.13176, -1.3919, 8, 0.17808,-0.050411, 1.773, 88,0.94654,0.69728, 2.9167, 100
19, 0, 0, NaN, o, 1, 1, NaN, 0,0.99998,0.99998, -0.99499, 0
20, 0.30568, 0.30689, -0.093846, 47, 0.070707, 0.065455, 0.071881, 56,0.62854,0.48084, 2.6413, 99
21, 0.19136, 0.22327, -1.452, 7, 0.22222, 0.14889, 0.42528, 66,0.97959,0.76606, 1.8373, 99
22, 0.22015, 0.16726, 10.8245, 100, 0.36306, -0.15618, 9.6282, 100,0.96778,0.35335, 15.2339, 100
23, 0.08406, 0.10169, -4.5703, 0, 0.23762, -0.12762, 4.6519, 100,0.98762,0.60238, 6.0343, 100
24, 0.4102, 0.34589, 4.2458, 100, 0.82857, 0.13457, 8.9292, 100,0.69338,0.53292, 2.6264, 99
25, 0.14966, 0.15358, =-0.24209, 32, 0.2381, 0.1, 0.65528, 51,0.92211,0.87686, 0.42745, 50
26,0.053624,0.048243, 1.1569, 89, 0.062112, 0.058261, 0.040003, 6,0.99319,0.89658, 3.6763, 100
27, 0.20209, 0.19155, 1.2751, 90, 0.093633, 0.064644, 0.52737, 67,0.83274,0.44163, 10.5648, 100
28, 0.37139, 0.3764, -0.31136, 45, 0.14019, 0.095701, 0.5921, 67,0.79046,0.57808, 4.1357, 100
29, 0.37622, 0.26208, 9.0336, 100, 0.70787, 0.039101, 8.168, 100,0.64449,0.47324, 2.7723, 100
30, 0.33347, 0.30927, 1.7178, 96, 0.54286, 0.095143, 5.5966, 100,0.85292,0.50253, 6.0303, 100
31, 0.22893, 0.24931, -0.99388, 14,-0.096774, 0.13032, -1.8803, 0,0.98194,0.61131, 4.2027, 100
32, 0.18341, 0.11878, 18.4957, 100, 0.28161, -0.15667, 5.4021, 100,0.94908,0.41311, 12.7962, 100
33, 0.3866, 0.37729, 0.76166, 77, 0.32432, 0.059189, 3.8055, 100,0.76762,0.59612, 4.2834, 100
34, 0.4876, 0.43471, 0.66412, 71, 0.45455, 0.47273, -0.091987, 26,0.65529,0.81606, -1.3744, 14
35,0.084203,0.085013, -0.312, 40, -0.24638, -0.14589, -0.93777, 0,0.94752,0.67504, 4.6206, 100
36, 0.61983, 0.5062, 1.4912, 93, 0.81818, 0.59818, 1.3411, 80,0.89709, 0.8485, 0.56436, 68
37, 0.21137, 0.27294, -7.4452, 0, -0.20755, -0.12006, -1.6681, 4, 0.8854,0.41633, 14.0797, 100
38, 0.68222, 0.56131, 3.9645, 100, 0.71429, 0.4302, 3.8722, 100,0.81505,0.80138, 0.35774, 60

3.3.5 Plotting results

The user can visualize the results of the last output in a graphical way. For example for visualizing the
results of modularity and NTC nestedness value, the user can type:

58 mstat.plotter.font_size = 10; $%$Size for x—labels.
50 figure(l);

60 mstat.plotter.PlotModularValues();

61 figure(2);

62 mstat.plotter.PlotNestednessValues () ;

[

T e s e o0

! !
® Measured Modularity ® Medsured Nestedriess ge000® °
ool © Random expectation] ool © Ranfom expectaign]
L] ° °
L]
0.8 — 08 L] —
Py o060
L]
0.7 — 0.7 [] b

o
>
T
°
°
F—o—
I

Modularity (Q
roe
o+
Foq 3
e]
o @
Forde
Nestedness (N)
—o—
o
o—
o
o—

L]
03 . §§ §§o 1
]
L] §
0.2 E one® 02 4
; - :
§§ °
< o
01f To B 01f B
o0

0 s \ \ s s s \ 0 s \ s s \
IS5 eEEI8EE 0SS NCESEE00S S ESLEEEEEgES 5S8R SSSSEEEELES TEEE5CEEESSEETEI3 3
322228858685 08C58286835588503888¢88888¢8 52285885 558888888 2825828888388288528
385888888585 588cE28E¢82¢88E888888888¢¢8¢ SES8888888¢8¢88¢E8¢8 BEE5EE888828888¢888
888588889388 QR2CRREERRRAECRC8RERRRRARR SER23888RRERESRERE S3R8S888RRERRRE8ES
PR e e I R S 3rosni3ssssmycs S oo SoSSrsoinszser
2T 8890982 MO=L=00g S 0T 5L D s2oo002 I = c o2 S E £ @ 0O TEoOT 52 @S9 So0=c5=0208Tc 20
SEiccEeiissec gyt iscoE 8 o s eS i8558 <pgREcZ8osifigEs §2cdggccepisgstEss
§23 SEREESSTS 4 o) godc " 5E§ @2N 23dqa g] £ °5 28 259032528
“eEE0 5395538555582 £ &5 3528sa 58 £85 858388¢8s S5 ESE¥O5253 gEE¥Y
as S shIg o8 &) 38 38 & 8 3 T a O=0 ”o 2 so 5
g = = 8
§ g

(a) Modularity statistics (b) Nestedness (NTC) statistics

Figure 7: Visual representation of the statistical tests in the set of matrices. Red circles represent the value
of the analyzed networks. White circles represent the mean of the null model, while the error bars represent
the networks that falls inside a two-tailed version of the random null model values. The margin of the error
bars are (p-value,1-p-value), where p-value can is an optional argument of the plot functions.

In addition the user can also plot the data in either graph or matrix layout. Here we show for graph

nested layout and modular matrix layout. As in the case of a single network, is possible to specify some of
the most fundamental format properties.

23

68 mstat.plotter.p.value = 0.05; %p—value for color labeling

69 % Plot of nested graphs

70 mstat.plotter.bead.color_.rows = 'blue'; %Color of row nodes

71 mstat.plotter.bead-color_columns = 'red'; %Color of column nodes
72 mstat.plotter.link.width = 0.5; $Edge width

73 mstat.plotter.use_isocline = false; %Do no show isocline inside modules
74 figure(3);

75 mstat.plotter.PlotModularMatrices (5,8); %Use a grid of 5 x 8

76 %Plot of modular matrices

77 figure (4);

78 mstat.plotter.PlotNestedGraphs (5, 8);

Abe 2007 Barrangou 2002 Braun—Breton 1981 Campbell 1995 Capparelli 2010 Caso 1995 Comeau 2005
Ceyssens 2009 '
. . S
i . -

Comeau 2006 Doi 2003 Duplessis 2001 Gamage 2004 Goodridge 2003 Hansen 2007

DePaola 1998

H
[1] %
Kankila 1994 Krylov 2006 Kudva 1999 Langley 2003 McLaughlin 2008 ~ Meyer unpub Miklic 2003
¥ B 5 Middelboe 2009
HENE
Pantucek 1998 Paterson 2010 Poullain 2008 Quiberoni 2003 Rybniker 2006 Seed 2005 Stenholm 2009

Zinno 2010

Suttle 1993 Synott 2009 Wang 2008 Wichels 1998
Sullivan 2003 :I R

Figure 8: The meta-set collected on Flores et al [2] plotted using the modularity algorithm of the BiMat
library. Red and blue labels represent significant modularity (p > 0.975) and anti-modularity (p < 0.275),
respectively. For bibliographic information about these matrices see [2].

24

Abe 2007 Barrangou 2002 Braun-Breton 1981 Campbell 1995 Capparelli 2010 Caso 1995 Ceyssens 2009 Comeau 2005

Comeau 2006 DePaola 1998 Doi 2003 Duplessis 2001 Gamage 2004 Goodridge 2003 Holmfeldt 2007

Kankila 1994 Krylov 2006 Kudva 1999 McLaughlin 2008 Meyer unpub Middelboe 2009 Miklic 2003

Mizoguchi 2003 Pantucek 1998 Paterson 2010

Sullivan 2003 Suttle 1993 Synott 2009 Wang 2008 Wichels 1998

£ I

Figure 9: NODF nestedness values of a set of 38 matrices of phage-bacteria networks. A two-tail p-value
of 0.05 was used for labeling the names. Blue and and red lebels represent anti and statistical significance,
respectively. Notice that this Figure shows an smaller number of nested matrices than the NTC plot of the
previous figure.

Rybniker 2006 Seed 2005 Stenholm 2009

25

References

1]

2]

Michael Barber. Modularity and community detection in bipartite networks. Physical Review F,
76:066102, 2007.

Cesar O Flores, Justin R Meyer, Sergi Valverde, Lauren Farr, and Joshua S Weitz. Statistical structure
of host—phage interactions. Proceedings of the National Academy of Sciences, 108(28):E288-E297, 2011.

Cesar O Flores, Sergi Valverde, and Joshua S Weitz. Multi-scale structure and geographic drivers of
cross-infection within marine bacteria and phages. The ISME journal, 7(3):520-532, 2013.

K Moebus and H Nattkemper. Bacteriophage sensitivity patterns among bacteria isolated from marine
waters. Helgolinder Meeresuntersuchungen, 34(3):375-385, 1981.

Timothée Poisot. An a posteriori measure of network modularity. F1000Research, 2, 2013.

26

	Description
	Main Goal
	System Requirements
	Functionality
	Workflow

	Installation
	Downloading BiMat
	Installing BiMat and adding it to the MATLAB® path
	BiMat configuration: Options.m file
	Getting help

	Examples
	BiMat - Creating networks
	Contents
	Add the source to the MATLAB® path
	Bipartite class (main class)
	Required input
	Optional input
	Creating input for Bipartite class
	Creating a Bipartite object from MATLAB® data
	Creating a Bipartite object from text files

	BiMat Use case using Moebus cross-infection matrix data
	Contents
	Add the source to the MATLAB® path
	Creating the Bipartite network object
	Calculating Modularity
	Calculating Nestedness
	Plotting in Matrix Layout
	Plotting in graph layout
	Statistical analysis in the entire network
	Statistical Analysis of the internal modules

	BiMat - Meta-Statistics Example
	Contents
	Add the source to the MATLAB® path
	Creating a MetaStatistics object
	Perform an statistical analysis in the set of matrices
	Plotting results

