# NH1410 Cruise Report

# Eastern Tropical North Pacific Oxygen Minimum Zone Microbial Biogeochemistry Expedition 2 -Autonomous Float Sampling for N Loss (OMZoMBiE 2 - Floats)



Vessel: *R/V New Horizon* Dates: May 10-June 8, 2014 Port of departure/return: San Diego, CA

# Contents

| I. Objectives                                                   | p3  |
|-----------------------------------------------------------------|-----|
| Table 1. Science participants.                                  |     |
| II. Study site - ETNP OMZ                                       | p4  |
| Figure 1. ETNP environmental conditions.                        |     |
| III. Sampling strategy and cruise operations                    | p6  |
| Table 2. Station names and coordinates.                         |     |
| Figure 2. Cruise track.                                         |     |
| IV. Group Summaries                                             | p8  |
| i. Microbial community genomics and function (Stewart)          |     |
| ii. N isotope chemistry (Altabet)                               |     |
| iii. Float operations (McNeil and D'Saro)                       |     |
| Figure 3-9. OMZ float data.                                     |     |
| iv. Rates and pathways of microbial N transformation (Thamdrup) |     |
| Figure 10. Rosette sampling photo.                              |     |
| v. Picocyanobacteria in the OMZ (Ulloa)                         |     |
| vi. O2 distributions and DCM microbial activity (Revsbech)      |     |
| vii. DIC chemistry (Hernandez-Ayon)                             |     |
| VI. References                                                  | p25 |
| Appendix A - Pump-profiling system (PPS) operations             | p27 |
| Appendix B - Operations log                                     | p37 |

#### I. Objectives

The broad objective of this cruise was to characterize microbial nitrogen and sulfur cycling in the anoxic oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific (ETNP). Specific emphasis was placed on key steps of dissimilatory nitrogen metabolisms contributing to fixed nitrogen loss (e.g., anammox, denitrification), and autotrophic sulfur oxidation. Meeting this broad objective involved an overall assessment of OMZ microbial diversity, gene content, and metabolic activity across gradients of oxygen and substrate (e.g., inorganic nitrogen) availability and between particle-associated and free-living microniches, as well as detailed descriptions of water column chemistry using a novel autonomous float platform for measuring nitrogen loss (via N<sub>2</sub> production) *in situ*. This cruise builds upon prior work initiated in the study area in June 2013 during cruise OMZoMBiE 1 (NH1315).

| Participant            | PI/Lab          | Role      | Institution                |
|------------------------|-----------------|-----------|----------------------------|
| Frank Stewart          | Stewart         | Chief Sci | Georgia Tech               |
| Josh Parris            | Stewart         | Grad      | Georgia Tech               |
| Cory Padilla           | Stewart         | Grad      | Georgia Tech               |
| Mark Altabet           | Altabet         | PI        | U Mass-Dartmouth           |
| Anne Bourbonnais       | Altabet         | Postdoc   | U Mass-Dartmouth           |
| Haibei Hu              | Altabet         | Grad      | U Mass-Dartmouth           |
| Anne Cruz              | Altabet         | Tech      | U Mass-Dartmouth           |
| Eric D'Asaro (onshore- |                 |           |                            |
| support, floats ops)   | D'Asaro         | PI        | U Washington               |
| Craig McNeil           | McNeil          | PI        | U Washington               |
| Andrew Reed            | McNeil          | Grad      | U Washington               |
| Bo Thamdrup            | Thamdrup        | PI        | U. Southern Denmark        |
| Laura Bristow          | Thamdrup        | Postdoc   | U. Southern Denmark        |
| Martin Hernandez-Ayon  | Hernandez-Ayon  | PI        | U Autonoma de Baja, Mexico |
| Orión Lopez            | Hernandez-Ayon  | Grad      | U Autonoma de Baja, Mexico |
| Gadiel Alarcon         | Ulloa, Osvaldo  | Scientist | U. Concepcion, Chile       |
| Montserrat Aldunate    | Ulloa, Osvaldo  | Postdoc   | U. Concepcion, Chile       |
| Emilio Garcia-Robledo  | Revsbech, Niels | Postdoc   | Aarhus U, Denmark          |
|                        | Peter           |           |                            |
| Meghan Donohue         | NA              | ResTech   | Scripps Inst. Oceanography |
| Josh Manger            | NA              | ResTech   | Scripps Inst. Oceanography |

#### Table 1. Science party.

Cruise NH1410 was funded through NSF BIO OCE grants to PIs Stewart (1151698) and Altabet (1154741). In total, the cruise combined the efforts and expertise of 16 science party participants (not including ResTechs), representing 8 laboratories (PIs) from 7 universities and 4 countries (Table 1). This collaboration utilized an integrated sampling approach involving ship-based and autonomous (float) profiling of environmental variables (oxygen, inorganic nitrogen and carbon concentrations,  $N_2$  production), bottle and microcosm incubations for measuring metabolic rates,

and biomass collections for molecular analyses (metagenomics, metatranscriptomics, single-cell genomics). A key component of this project involved the testing and application of two autonomous floats (APL GasFloats) equipped with gas tension devices to measure biogenic N<sub>2</sub> production in OMZs (Project 1154741, Altabet). Rosette-based water sampling and chemical profiling were directly coupled to float operations to calibrate autonomous measurements and to enable time-series Lagrangian sampling within a water mass in the OMZ. In addition, this cruise enabled further testing of a novel Rosette-based sampler for the *in situ* preservation of microbial biomass samples for gene expression analysis (Stewart group). Additional details regarding sampling and cruise operations can be found below.

#### II. Study site - ETNP OMZ

Encompassing  $\sim 12 \times 10^6$  km<sup>2</sup> of shelf and off-shelf waters, the ETNP OMZ south of Baja California is the largest of the major permanent oxygen minimum zones (41% of total OMZ area) (Paulmier and Ruiz-Pino 2009). Dissolved O<sub>2</sub> falls to near or below the detection limit (<100 nM) at mid-water depths (~150-750m) throughout the region (Karstensen et al. 2008). This oxygen depletion significantly alters the pelagic ecosystem, resulting in a microbially dominated community driven by anaerobic metabolisms with major contributions to marine biogeochemical cycling, including key reductive processes driving the loss of bioavailable nitrogen (i.e., N<sub>2</sub> and N<sub>2</sub>O production by denitrification and anammox). Surprisingly, while the ETNP OMZ has been the focus of extensive oceanographic research, this region is underexplored from a microbiological and molecular perspective. Recent studies have begun to characterize the distribution and activity of a subset of functional taxonomic groups in the ETNP OMZ (Beman et al. 2012, 2013, Podlaska et al. 2012, Beman and Carolan 2013). However, the overall diversity of taxa and metabolisms and the contributions of these metabolisms to bulk ecosystem properties, including carbon flux and N<sub>2</sub> loss to the atmosphere, remain largely unknown for this OMZ.

Intensive microbial biogeochemical studies in other major OMZ regions have revealed a taxonomically diverse microbial and viral community with the potential for unexpected and cryptic metabolisms (Thamdrup et al. 2006, Stevens and Ulloa 2008, Canfield et al. 2010, Cassman et al. 2012, Wright et al. 2012, Ulloa et al. 2012). For example, experimental and molecular evidence from seasonal OMZs and from the permanent OMZ of the Eastern Tropical South Pacific (ETSP) has identified an abundant and active pelagic community of dissimilatory sulfur-metabolizing bacteria with important links to nitrogen loss processes and carbon cycling (Walsh et al. 2009, Canfield et al. 2010). However, it remains unclear how environmental conditions (e.g., oxygen, nitrogen gradients), and their fluctuation over variable spatial and temporal scales, structure the diversity, activity, and ecological significance of most microbial groups in OMZs. This cruise was organized around cross-disciplinary collaborations merging physical and biological oceanography, isotope biogeochemistry, microbiology, and genomics, thereby facilitating a comprehensive description of ETNP OMZ biogeochemistry and microbiology. Our expectation is that this work will enhance a broader understanding of how oxygen gradients structure pelagic microbial ecosystems and therefore affect elemental fluxes between the ocean and atmosphere. This work will also help advance the development of new techniques and instrumentation for studying microbial biogeochemistry in low-oxygen waters.



**Figure 1.** Profiles of nitrite, salinity, fluorescence, and dissolved oxygen in the upper water column of the study area west of Manzanillo in June 2013 (OMZoMBiE cruise, NH1315). The upper plots highlight a relationship between nitrite and salinity.

| Station*        | Lat N**   | Long W**   | Station*  | Lat N**   | Long W**   |
|-----------------|-----------|------------|-----------|-----------|------------|
| Test station    | 32 37.239 | 117 29.838 | 11F-03    | 20 42.800 | 107 52.444 |
| Soledad (#1)    | 25 11.939 | 112 42.113 | 11F-04    | 20 44.726 | 107 53.997 |
| Float dunk test | 23 36.590 | 111 06.003 | 11F-05    | 20 43.846 | 107 55.195 |
| 4T              | 18 53.873 | 106 17.977 | 12F-01    | 20 44.971 | 107 57.116 |
| F1              | 18 59.927 | 106 59.968 | 12F-02    | 20 47.877 | 107 54.354 |
| F2              | 19 19.979 | 107 00.042 | 12F-03    | 20 49.735 | 107 56.254 |
| F3              | 19 40.291 | 107 00.057 | 12F-04    | 20 49.029 | 107 55.441 |
| F4              | 20 00.062 | 107 00.037 | 12F-05    | 20 50.989 | 107 56.992 |
| F5              | 20 19.965 | 107 00.000 | 13F-01    | 20 52.963 | 107 58.268 |
| F6              | 20 39.907 | 107 00.199 | 13F-02    | 20 53.295 | 107 57.338 |
| F7              | 21 00.104 | 107 00.089 | 13F-03    | 20 53.570 | 107 58.254 |
| 6T              | 18 54.001 | 104 54.040 | 13F-04    | 20 53.337 | 107 58.165 |
| 7T              | 18 12.023 | 104 12.160 | 13F-05    | 20 53.990 | 107 58.270 |
| 8T              | 18 11.885 | 104 53.804 | 13F-06    | 20 54.122 | 107 54.767 |
| 9Т              | 18 11.998 | 105 12.006 | 13F-07    | 20 55.755 | 108 00.063 |
| 10T             | 18 12.047 | 106 17.797 | 13F-08    | 20 55.420 | 108 00.135 |
| 11T             | 18 12.077 | 107 29.955 | 14F-01    | 20 57.351 | 108 00.670 |
| 2T              | 18 54.072 | 108 48.015 | 14F-02    | 20 57.707 | 108 00.490 |
| 3T              | 18 54.201 | 107 29.922 | 14F-03    | 20 56.972 | 107 58.153 |
| 3Ta             | 18 54.475 | 107 19.488 | 14F-04    | 20 56.857 | 107 58.014 |
| 9F-01           | 20 33.354 | 107 46.060 | 14F-05    | 20 57.169 | 107 58.260 |
| 9F-02           | 20 33.120 | 107 46.536 | 14F-06    | 21 00.092 | 108 00.321 |
| 10F-01          | 20 36.723 | 107 49.214 | 14F-07    | 20 59.792 | 107 59.755 |
| 10F-02          | 20 37.279 | 107 50.527 | 14F-08    | 20 59.954 | 108 00.005 |
| 10F-03          | 20 39.655 | 107 51.567 | 15F-01    | 20 52.70  | 107 42.48  |
| 10F-04          | 20 40.321 | 107 51.742 | ES (eddy) | 21 45.029 | 110 50.946 |
| 10F-05          | 20 40.198 | 107 49.448 | BS-01     | 28 21.900 | 115 51.719 |
| 11F-01          | 20 42.766 | 107 51.791 | BS-02     | 29 50.417 | 116 30.989 |
| 11F-02          | 20 41.176 | 107 51.591 |           |           |            |

#### Table 2. Station locations.

\*Stations named to maintain consistency with CTD log files (see 'Operations log') \*\*Lat/Long are coordinates for initial CTD/PPS deployment at each station

#### **III.** Sampling strategy and cruise operations

A primary goal for NH1410 cruise operations was to balance N-sensing float operations with ship-based water sampling for chemical measurements and experiments. To meet this goal, the cruise was structured into three primary phases (Figure 2, Table 2).

- **Phase 1** (May 10-19) involved transit south from San Diego, test deployments of instrumentation, CTD surveying to identify float deployment sites, and ARGO and APL float

deployment. Phase 1 also included water sampling for experimentation at a process station (4T) located on a transect line previously sampled in June 2013 (Cruise NH1315) and at Soledad Basin, a silled basin on the western continental shelf off Baja (~25° 6.0N, 112° 42.0W) that experiences persistent anoxia (Van Geen et al. 2003). Prior to float deployment, a CTD-based survey was conducted along a S-N transect (19° to 21°N, 107°W) to assess water column oxygen and nutrient conditions and identify deployment sites. Based on survey results, APL floats were deployed in the vicinity of 20°N, 107°W on May 17th.



**Figure 2**. NH1410 cruise track showing key stations for float operations or water sampling (red circles) and associated waypoints. The cruise departed from and returned to the Scripps Nimitz Marine Facility, San Diego.

- **Phase 2** (May 19-27) involved extensive water sampling along two west-east transects spanning an off-slope-to-shelf gradient within the OMZ (stations 2T-11T; Figure 2). Biogeochemical and molecular analyses in the OMZ off Peru recently confirmed a stark contrast in microbial activity between offshore and coastal (shelf) sites, with the latter exhibiting substantially higher rates of key OMZ nitrogen transformations (Kalvelage et al. 2013). These elevated rates were linked to an overall greater level of primary production and organic matter influx at coastal sites. Sampling in the ETNP in June 2013 identified similar variability along our ETNP transects, with the transition from deeper waters to slope/shelf sites (from ~110°W to 104°W) accompanied by oxycline shoaling, a mid-depth (~200-500m) salinity increase, and an enhanced secondary fluorescence peak in the upper OMZ. Our sampling strategy was designed to capture similar gradients in 2014. At stations 2T-11T (excluding station 5T, which was not sampled), water was collected via either rosette or pump-profiling system (PPS; property of

collaborator O. Ulloa, U. Concepcion) and either preserved for chemical or molecular analysis at home institutions or used for shipboard measurements of nutrients, dissolved oxygen, and dissolved inorganic carbon (DIC) concentrations, bottle incubations to quantify rates of nitrogen metabolism, respiration, and  $O_2$ , and mesocosm experiments to examine community gene expression. Sampling required ~12-24 hours per station.

- **Phase 3** (May 27-June 8) involved a return to float-based operations and sampling, and return transit to San Diego. Notably, intensive water sampling was conducted from May 28 to June 3 along the track of the drifting APL floats. Sampling sites during this "drift survey" were determined based on float positions, thereby allowing repeat sampling of the same water mass over multiple diel cycles. (Floats were recovered on June 1; the survey continued along the projected float track until the morning of June 3) Samples for measurements of biochemical rates, nutrient concentrations, and community gene expression during the survey were collected primarily from the primary and secondary chlorophyll layers and lower oxycline (all within the photic zone), and intermittently from the OMZ nitrite maximum (below the photic zone). Operations after the drift survey involved rosette sampling at two sites in non-OMZ waters north of the study area (June 4,6; Figure 2).

# **IV. Group Summaries**

Detailed summaries of sampling activities are provided below, listed according to PI/group. A list of station names and locations is provided in Table 2 at the end of the document, along with a summary of PPS deployments and the Operations Log for the cruise (Appendix A and B).

# i. Microbial community genomics and function - Stewart

Team members: Cory Padilla (grad student), Josh Parris (grad student), Frank Stewart (PI)

<u>Cruise objectives</u>: The Stewart lab explores how oxygen concentrations affect the structure and function of marine microbial communities. The first major objective of this research is to characterize the genomic basis and biogeochemical properties of coupled microbial sulfur and nitrogen cycles in oxygen-depleted marine waters. This work involves sampling at two physiochemically distinct low oxygen regions, the permanently anoxic oxygen minimum zone (OMZ) of the ETNP (this cruise, and cruise NH1315 in 2013) and the seasonally hypoxic zone of the Gulf of Mexico (2012, 2015). To help contextualize sulfur cycling relative to other community biogeochemical and ecological processes, a secondary objective is to conduct an overall assessment of OMZ microbial (prokaryote and eukaryote) and viral diversity and metabolism across gradients of oxygen and substrate (e.g., inorganic sulfur and nitrogen) availability and between particle-associated and free-living microniches. A substantial component of this secondary objective involves participation by collaborators, with a focus on linkages between OMZ sulfur cycling and key steps of dissimilatory nitrogen metabolism (e.g., nitrification, anammox, denitrification) and carbon metabolism (e.g., dark carbon fixation).

# Cruise tasks:

1) *DNA/RNA sampling*. We collected samples for metagenomic, metatranscriptomic, and single-cell genomic analyses of OMZ bacterioplankton biomass over depth gradients at coastal and

offshore sites in the ETNP OMZ. Coupled community DNA/RNA samples were collected from an average of 4-12 depths targeting key water column features: the oxic photic zone, oxycline (upper), OMZ interface, secondary chlorophyll maximum, nitrite/salinity maximum, and anoxic OMZ core. Depth profile samples for metagenomics (DNA) only were collected at a subset of stations. At most stations (transect and survey), DNA/RNA sampling was coupled to collections by the Thamdrup lab, either for experimental measurements of biogeochemical rates (anammox, denitrification, N<sub>2</sub>O production, and methane production/consumption), experiments, or chemical measurements (e.g., methane concentration). At three sites (float survey, 3T, 7T), DNA/RNA collections were coupled to high-resolution sampling for anammox rate measurements across the oxycline, interface, and upper OMZ (Thamdrup lab). In most instances, DNA/RNA samples were collected across two or three size classes (0.2-1.6  $\mu$ m, 1.6-30  $\mu$ m, > 30 µm) to assess compositional and metabolic differences between free-living and particleassociated OMZ bacterioplankton. Filter volumes for all DNA/RNA samples were recorded to enable downstream quantitative-PCR counts of individual microbial taxa or target functional genes. At four sites (2T, 3T, 9T, F14), size fractionated microbial samples were collected from bathypelagic depths beneath the OMZ (2300-3000 m) in coordination with the Altabet lab.

2) Methane sampling. In collaboration with the Thamdrup lab and the Girguis lab (Harvard), we collected samples to A) quantify methane concentration and production measurements across the OMZ, B) measure microbial gene transcription in response to methane addition, and C) enrich for nitrite-dependent methanotrophs related to NC10 bacteria. This work was motivated by metagenomic and metatranscriptomic sequences from the 2013 ETNP cruise suggesting the presence and transcriptional activity of microorganisms mediating both the production (methanogens) and consumption (methanotrophs) of methane in the OMZ, notably at core anoxic depths at station 6T. These sequences include a subset matching the NC10 clade, a group of methanotrophic bacteria that putatively oxidize methane aerobically under anoxic conditions using oxygen liberated from the dismutation of nitric oxide. Sampling for methane concentration (objective A) and turnover is described below (Thamdrup lab). To meet objective B, microbial gene expression in response to methane was measured at three sites (8T,10T, F14) using microcosm (bottle) experiments. For each experiment, OMZ water (~300 m, OMZ core) was collected and used for anaerobic incubations in glass bottles. Seawater was purged of residual oxygen and amended with nitrite (15  $\mu$ M), followed by a pulse of methane gas (1 min). The bottles were incubated for 15 hrs under in situ temperatures, without light, and with a continual feed of helium/CO<sub>2</sub> gas into the bottle headspace. Samples for analysis of community RNA and methane concentration were collected at the end of each experiment. Experiments were run in collaboration with the Thamdrup lab. To meet objective C, enrichments for nitrite-dependent NC10 bacteria were initiated using core OMZ water from two stations (6T, 8T). A total of 32 enrichment treatments were initiated at each site, encompassing variation in cell abundance (filter-concentrated vs. non-concentrated cells), and inorganic nitrogen source (nitrite vs. nitrate) and concentration (ambient, 10, 100, or 1000 µM nitrite or nitrate).

3) *In situ RNA preservation*. We deployed and tested a recently developed instrument for the *in situ* collection and preservation of microbial biomass for RNA analysis. The sampler is designed for mounting on a standard Rosette and actuated by bottle triggering. Upon triggering, seawater is pumped through a collection filter for 25 min, followed by pumping of RNA preservative to saturate the filter. The goal is to stabilize RNA *in situ*, thereby minimizing changes in the total

transcript pool that may arise due to collection and transport to the surface (i.e., in response to changes in oxygen). The sampler was deployed successfully on three casts to the OMZ core at station 8T. *In situ* preserved samples will be compared to control samples collected via Niskin bottle and processed through standard filtration and preservation methods aboard ship. This objective is part of a collaboration with the Girguis lab.

4) Size-fractionation filter experiments. We ran three experiments to test how measurements of microbial community composition vary depending on the volume of water passed through a filter. Filter clogging may rapidly change the composition of the retained biomass. I.e., small cells pass through a filter early during filtration, but may eventually be retained as the volume of water passed through a filter increases. Quantifying this bias is critical for accurately characterizing microbial communities within different filter size fractions or microhabitats (e.g., free-living vs. particle-associated communities). These experiments tested a range of water volumes and three filters types (0.2  $\mu$ m Sterivex, 1.6  $\mu$ m GF/A disc, and 30  $\mu$ m nylon disc filters).

5) *Diel gene expression*. Samples for analysis of microbial community gene expression over a day-night cycle were collected four times per day (0700, 1200, 1800, 2300 hrs) from 3-4 target depths during the 5-day APL float drift study (29 May – 1 June). Samples for total RNA analysis were collected from the primary and secondary chlorophyll maxima (~40 and 90 m, respectively) and upper OMZ interface (~70 m) at each timepoint. RNA from the nitrite/salinity maximum (125-150 m), which occurred below the photic zone, was sampled at only the beginning, middle, and end of the survey. DNA for community composition analysis was sampled at the same three timepoints. All samples were collected via rosette or PPS deployments as close to the actual or predicted positions of the drifting APL floats as possible. Coupled with measurements of water column chemistry and biogeochemical rates, these RNA samples will enable one of the first Lagrangian surveys of microbial community metabolism within a dynamic OMZ water mass.

6) *Other*. Samples to initiate enrichment cultures of OMZ microbes for use in microbial fuel cells (Girguis lab) were collected from the core of the OMZ at station F9. Samples for analysis of community transcription in response to light gradients were collected to complement incubation experiments by E. Garcia-Robledo (Station F13).

#### *ii. N isotope chemistry - Altabet*

<u>Team Members</u>: Mark A. Altabet (PI), Annie Bourbonnais (postdoc), Anne Cruze (summer intern), Happy Hu (grad student)

#### Background:

# Nitrogen isotope and $N_2/Ar$ biogeochemistry of the ETNP suboxic zone: a Lagrangian experiment

Nitrogen (N) is an essential and often limiting macronutrient for primary producers in the surface ocean. It is therefore an important modulator of the marine biological pump and of the ocean's capacity to sequester atmospheric  $CO_2$ , a greenhouse gas, in its interior (Falkowski, 1997). The

availability of bio-available N in marine environments is regulated by the balance between N sources, mainly from N<sub>2</sub> fixation, and N loss by denitrification and anaerobic ammonium oxidation (anammox), both of which occur under hypoxic conditions ( $[O_2] < 10 \mu$ M) and convert dissolved inorganic N to gaseous N<sub>2</sub>. Although they represent only 0.1% of total oceanic volume, OMZ's host the largest portion of total marine N-loss (up to 400 Tg/yr; Codispoti, 2007) and dominate the ocean N isotope budget through co-generation of <sup>15</sup>N and <sup>18</sup>O enriched NO<sub>3</sub><sup>-</sup> (Cline and Kaplan 1975; Voss et al., 2001; Sigman et al. 2005) and <sup>15</sup>N depleted N<sub>2</sub>.

The most direct geochemical measure of N-loss is to measure the accumulation of biogenic  $N_2$ . However, even in the most active oceanic N-loss settings this is a small signal on top of a large background of atmospherically derived  $N_2$ . This has traditionally been overcome by very precise mass spec measurements of the ratio of  $N_2$  to inert Ar gas on samples brought back to the laboratory. A novel approach is to precisely measure total dissolved gas pressure use gas tension devices (GTD) which in the absence of  $O_2$  is almost entirely due to  $N_2$  gas.

Stable isotope measurements are another useful tool to study N-cycle transformations in marine environments. Both NO<sub>3</sub><sup>-</sup> assimilation and denitrification increase NO<sub>3</sub><sup>-</sup>  $\delta^{15}$ N (with  $\delta$ =[ $(R_{sample}/R_{standard})$ -1] × 1000, where R represents the ratio of <sup>15</sup>N to <sup>14</sup>N) as a consequence of kinetic N-isotope fractionation (e.g. Cline and Kaplan, 1975; and reference therein). The isotope enrichment factor ( $\varepsilon_{den}$ ) associated with microbial denitrification is high, with most recent estimates from both laboratory experiments and natural environments clustering between 20 and 25‰ (Brandes et al., 1998; Voss et al., 2001; Granger et al., 2008). The measurement of coupled  $NO_3$  N and O isotope ratios has the potential to disentangle  $NO_3$  consumption and production processes in environments where they occur simultaneously (Sigman et al., 2005; Casciotti and McIlvin, 2007; Bourbonnais et al., 2009; 2012). In addition, the unusual inverse fractionation effect for NO<sub>2</sub><sup>-</sup> oxidation (Casciotti et al. 2009,  $\varepsilon \sim -14$  to -20‰) represents a potentially powerful approach to help distinguish processes controlling both the NO<sub>3</sub><sup>-</sup>  $\delta^{18}$ O: $\delta^{15}$ N relationship and the production of biogenic N<sub>2</sub>. For denitrification,  $\delta^{15}NO_2^{-1}$  would be a function of the difference in  $\varepsilon$  values for NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> reduction. Since they are similar in magnitude (Bryan et al., 1983),  $\delta^{15}NO_2$  should be similar to  $\delta^{15}NO_3$ . However if NO<sub>2</sub> oxidation is a significant fraction of these fluxes,  $\delta^{15}NO_2^{-1}$  is lower, as observed in the ETNP consistent with either extensive cycling between NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> and/or important fluxes to NO<sub>3</sub><sup>-</sup> via oxidation of low  $\delta^{15}$ N NH<sub>4</sub><sup>+</sup>.

The large isotopic and isotopomer signatures associated with N<sub>2</sub>O production and consumption yield important source/sink information (Yoshinari et al 1997; McIlvin and Casciotti 2010). In addition to bulk  $\delta^{15}$ N and  $\delta^{18}$ O, the asymmetry of the N<sub>2</sub>O molecule permits distinguishing the N isotopic composition of the central ( $\alpha$ ) and end ( $\beta$ ) position N atom (<sup>15</sup>N site preference (SP) is defined as  $\delta^{15}$ N<sup> $\alpha$ </sup> -  $\delta^{15}$ N<sup> $\beta$ </sup>) (Yoshida and Toyoda 2000), which is distinct for N<sub>2</sub>O resulting from nitrification or denitrification, and thus potentially allow to differentiate between these different processes.

#### Cruise objectives and tasks:

Our main goal during the research cruise NH1410 was to collect discrete and continuous samples to calibrate two Lagrangian (#77 and #78) and one Argo floats first deployed at 19 59.936°N and 107 00.059°W, on the southern edge of a cyclonic eddy (see McNeil section. These, for the first

time, were equipped with GTD sensors for the purpose of measuring biogenic  $N_2$  production in OMZ's. The floats were recovered about 3 weeks later at 20 33.342°N and 107 46.065°W. In addition to samples to be returned to the laboratory, we also made for the first time high precision  $N_2$ /Ar measurements at sea using a quadrupole mass spectrometer on discrete samples collected by CTD as well as continuous samples obtained using a pump profiler system (PPS). Samples were also collected along hydrographic sections (stations 1T-11T (except station 5T)). The following analysis were (will be) performed:

1) *Nutrient concentrations*. 15 to 125 mL of seawater was frozen for nitrate ( $NO_3^-$ ) and phosphate ( $PO_4^{-3-}$ ) analysis on-shore. Nitrite ( $NO_2^-$ ) was analyzed on-board using a  $NO_2^-$  autoanalyzer. Continuous  $NO_2^-$  profiles were collected at stations 2T, 3T, 6T, 7T, 8T, 10T, 11T and F10 and F11 using the PPS.

2) Dissolved inorganic N (DIN) isotopes. NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> for  $\delta^{15}$ N and  $\delta^{18}$ O analysis were collected at all regular and float stations. In addition, at two stations (2T and 9F), ~60 samples for both NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> isotopes were collected using the PPS for high-resolution profiles. NO<sub>3</sub><sup>-</sup> isotope samples were collected in 125 mL HDPE bottles acidified with HCl and sulfamic acid to remove NO<sub>2</sub><sup>-</sup> prior to NO<sub>3</sub><sup>-</sup> analysis. NO<sub>2</sub><sup>-</sup> isotope samples were collected in 125 mL HDPE bottles acidified in 125 HDPE bottles and preserved at pH 12 (with NaOH) to avoid O isotope exchange with water.

3)  $N_2/Ar \& \delta^{15}N_2$ . Discrete samples were collected at all regular and float stations in 60 mL glass bottles as described in Charoenpong et al. (2014) and preserved with 0.5 mL of 25% HCl. Discrete samples as well as continuous profiles (from the PPS) were also analyzed for N<sub>2</sub>/Ar using a shipboard mass spectrometer (Pfeiffer Vacuum). In addition, at station F9, ~60 discrete samples were collected using the PPS for high-resolution  $\delta^{15}$ N-N<sub>2</sub> profiles.

4)  $N_2O \, \delta^{15}N$  and  $\delta^{18}O$  and  $^{15}N$  site preference. Samples were collected at all regular stations and float station F9 in 125 mL glass bottles as described in Charoenpong et al. (2014) and preserved with 1 mL of 25% HCl.

5) *Near-surface POM*  $\delta^{15}N$ . Surface seawater from the underway system was filtered through 47 mm GF/F filters at all stations as well as during transit. At stations 3T (cast 07), 8T (cast 08), 9T (cast 04), 10T (cast 05), 11T (cast 07), 11F (cast 04), 12F (cast 04), 13F (cast 08), 15F (cast 01), and ES (cast 01), seawater in the first 200 m depth from Niskin bottles were also filtered through 47 mm GF/F filters.

#### iii. Float operations - McNeil and D'Asaro

<u>Team members</u>: Andrew Reed (grad student), Happy Hu (grad student from Altabet Lab), Eric D'Asaro (PI), Mark Altabet (PI) and Craig McNeil (PI)

<u>Cruise objectives</u>: The primary technical objective was to test and validate a new in situ method to measure dissolved gaseous  $N_2$  production rates associated with de-nitrification processes in Oxygen Minimum Zone (OMZ) using a gas tension device mounted on a profiling float. The gas tension device was customized for use in the deep anoxic waters of the OMZ and uses a gas permeable Teflon membrane matrix interface and a precise pressure sensor to measure the total dissolved air pressure, or gas tension. Since the waters are anoxic in the OMZ, gas tension signal

is primarily the sum of the partial pressure of  $N_2$  gas, or  $pN_2$ , and water vapor. We measured vertical profiles of excess  $N_2$  gas and temporal changes in  $N_2$  along isopycnal surfaces. The overarching scientific motivation is to test the hypothesis that denitrification processes in deeper offshore waters are stimulated by the rain-down of organic matter from productive near-surface eddies originating from the continental shelf (e.g. by coastal upwelling).

# Cruise tasks:

1) *APL GasFloats*. We deployed and recovered two APL Gasfloats (serial numbers #77 and #78), each equipped with a custom gas tension device to measure N<sub>2</sub> gas, a WetLabs FLNTU fluorometer for Chl and backscattering at 550 nm and 700 nm for suspended and particulate matter, dissolved oxygen using Aanderaa optode and a SBE-43 O<sub>2</sub> sensors, and a Satlantic SUNA sensor for nitrate and (hopefully) nitrite concentrations. We first surveyed the targeted region from 19 °N to 21 °N (station F1 through F7) at 107 °W, identified from satellite imagery to have high Chl levels. Based on the analysis of the survey data, with valuable contributions provided by Emilio Garcia-Robledo using the STOX sensor, we decided to deploy Float #77 early in the morning of 05/17/2014 in an offshore jet between two eddies located near 20 °N and 107 °W at station F8 (same coordinates as station F4). See Figure 3 for locations.



**Figure 3**. Location of pre-float deployment surveys F1 to F7 and deployment location F8 (yellow markers). Also shown are the main CTD transect stations (red markers).

We deployed Float #78 that same evening nearby Float #77 along with a custom Apex ARGO GasFloat. All three floats drifted northwest. We performed a time series CTD cast at the floats for sensor calibration purposes, coordinating sampling with Altabet's group who samples dissolved gases for mass-spectrometric analysis. The CTD sampling sequence was as follows: 1) float surfaced, 2) ship repositioned to within a few hundred meters of the float, 3) float was commanded to sink, and 4) a CTD was performed while the float was sinking to continue its mission. Just prior to vacating the float deployment region on 05/20/2014 to begin the main CTD surveys (see Figure 3, red markers), Float #77 was recovered due to a potential communications problem (post analysis suggested the float was fine). After returning to the float

region, Float #77 was re-deployed on the evening of 05/28/2014 nearby Float #78. Over the next 5 days the ship followed Float #78, performing several hydrocasts per day at its predicted location as part of a Lagrangian Drift Study (Figure 4). One goal of the Drift Study was to compare the float measured denitrification rates with those rates and processes identified by other investigators. Each day a morning hydrocast was performed in coordination with Altabet's group for comparison with the float sensors. Both floats were recovered 06/01/2014 and performed very well (Figure 5).



Figure 4. Drift track of Float #78 predicted using shipboard ADCP data



**Figure 5**. Partial pressure of dissolved nitrogen gas  $(pN_2)$  measured by Floats #77 and #78, and colored by SUNA measured nitrate concentration. Based on shipboard nitrite measurements (courtesy of Annie Bourbonnais in Altabet's group) we expected the excess N<sub>2</sub> to peak at around 125m depth.

2) Underway sampling and PPS. Various dissolved gas sensors were plumbed into the ship's seawater supply to the main lab from the bow. This same supply was switched to the PPS seawater supply when the PPS was in operation. The sensors were: 1) Aanderaa optode for

dissolved  $O_2$  and sea water temperature – importantly, this record also allows calculation of the warming of the seawater supply from the PPS which was observed to warm by up to 12 °C as shown in Figure 6; 2) a Pro-Oceanus Systems Inc. underway Gas Tension Device (GTD) for total dissolved air pressure; 3) an NDIR based Pro-Oceanus Systems, Inc. pCO<sub>2</sub> sensor; and 4) a Satlantic Inc. ISUS for nitrate (and hopefully nitrite).

Post-processing of the data collected using seawater supplied by the PPS must include a delay due to the transit time of water from the PPS intake to arrival at the main lab sensors, an additional delay due to the response time of the sensor and/or sampling system (e.g., nitrite analyzer) and any warming effects. Warming effects are significant, up to 12 °C, and significantly affect dissolved gas saturation levels. Of constant concern during the cruise was the ISUS sensor. To date we have confirmed that the newly calibrated sensor has a significant nearly linear drift of approximately 1 uM per day. Accounting for this drift, the underway measurements appear reasonable, however the measurements made on the PPS show peculiar features. An example profile is shown in Figure 7, which shows a decrease in nitrate concentration with depth and very large differences in the upcast and downcast surface measurements, neither of which are expected. Post-cruise analysis of discrete samples taken by Altabet's group will be performed to assess data quality.



**Figure 6**. Optode data from the PPS cast NH1410-PPS-10, showing: a) oxygen saturation levels and b) seawater temperatures at the PPS CTD intake and optode. Upcast and downcasts are separated.



**Figure 7**. Nitrate concentration measured by the ISUS sensor during PPS cast NH1410-PPS-10. We do not understand why some PPS casts show decreasing nitrate concentration with depth, nor do we understand the often very large difference between downcast and upcast near surface measurements. Further analysis required.

3) Winkler DO measurements. Nearly 200 Winkler titrations on samples taken from the rosette CTD, the PPS, and the ship's seawater supply to calibrate various dissolved oxygen sensors on the ship, PPS and floats. An example is shown in Figure 8. The sample depths were chose to provide a large measurement range and to target specific water masses identified by TS analysis. The titration kit (amperometric detection system from Langdon Enterprises Inc., following the LDEO design) used 0.01 N KIO<sub>3</sub> standard purchased from MKS Japan. Repeatability of Japanese standards was excellent:  $\pm 0.13\%$  (N=8). We are extremely grateful to Hapai 'Happy' Hu for performing this task aboard and also assisting with ISUS and SUNA dilution calibrations.



Figure 8. Example Winkler calibration of SBE43 on rosette CTD.

We were unable to modify the amperometric detection method to eliminate the well known 'nitrite interference' in anoxic OMZ waters. We tried adding sodium azide to the pickling reagents however it produced a clear interference with the  $KIO_3$  standard, which we could not explain. So we decided to not measure Winklers in anoxic waters and focused on calibrating the other in situ oxygen sensors to concentrations above approximately 30 µmol/kg. True determination of anoxia needs to be determined by the STOX sensor.

4) *Argo GasFloat.* We deployed a profiling Apex Argo-type float (s/n 7049) along with Float #78 and recovered it early morning on 06/03/2014 eastward of the drift track of Float #78. The Argo float had the same membrane interface as Floats #77 and #78 but was unpumped, making it a very slow response sensor. The float performed well, even though it was difficult with the long response time to make many equilibrated gas tension measurements. Vertical profile measurements are shown in Figure 9.

5) *GTD on CTD*. We attempted to install a GTD onto the SBE911CTD early on in the cruise but found the power consumption of the GTD to be too large for the CTD system. The outflow of the CTD's secondary salinity cell pump was used to flush the GTD's Teflon membrane interface,

but the reduced flow caused the response time of the GTD to increase significantly. It is uncertain if the data can be deconvolved to provide reasonable gas tension profiles. The GTD had to be removed for deep casts (>500 m depth). After it was confirmed that the floats were working well and collecting gas tension profiles we stopped mounting the GTD on the CTD.



**Figure 9.** Argo float profiles of temperature (T), salinity (S), potential density (Sig0), gas tension (GT) and optode oxygen saturation ( $O_2$ sat).

#### iv. Rates and pathways of microbial N transformation - Thamdrup

Team members: Laura A. Bristow (postdoc), Bo Thamdrup (PI)

<u>Cruise objectives</u>: Our main goal was to investigate the rates and pathways of microbial nitrogen transformation in the OMZ as a function of the environmental characteristics. We had a particular focus on the effect of oxygen on both aerobic and anaerobic processes, as well as on potential interactions of nitrogen and methane cycling. Our general approach was to quantify transformation rates in experimental incubations using stable isotope tracers (<sup>15</sup>N, <sup>13</sup>C, <sup>18</sup>O).

#### Cruise tasks:

1) *N metabolism rates -- high resolution*. We investigated the vertical distribution of nitrogen transformation rates at high vertical resolution across the upper oxic-anoxic interface of the OMZ and into the core. This was done at Stations 3T, 4F, and 7T, representing a shoreward gradient. At twelve depths at each station, we performed anoxic incubation of water amended with <sup>15</sup>N-labeled nitrate, nitrite, or ammonium, which will allow us to determine rates of nitrate reduction, denitrification, anammox, ammonium mineralization, ammonium oxidation, and nitrite oxidation. Potential oxygen contamination was monitored in a subset of the experiments by means of highly sensitive optode sensors. Incubations at selected depths using labeling of both nitrate and nitrite, and of nitrate to N<sub>2</sub>, bypassing the nitrite pool, and the nitrite oxidation associated with carbon fixation by anammox bacteria, respectively. The sampling of the water

column was coordinated with sampling for DNA/RNA analysis by the Stewart lab.

2) *Anammox rates - low resolution*. We extended the regional coverage of anammox rate determinations, included in item #1, by further incubations amended with <sup>15</sup>N-labeled ammonium at five depths at each of Stations 2T, 6T, 8T, and 11T. The sampling of the water column was coordinated with sampling for DNA/RNA analysis by the Stewart lab. Through a combination of these datasets we wish to obtain a detailed understanding of population dynamics and ecophysiology of anammox bacteria.

3) *N rates - Lagrangean sampling*. We further performed a 5-day temporal analysis of nitrate reduction, denitrification, and anammox in the same water mass (Lagrangean sampling, Stations 9F-13F) to analyze the dynamics of these processes in waters underlying a plume of surface chlorophyll, using incubations as in Item 1. This sampling was directed by the position of floats (McNeil lab), with floats providing in situ estimates of N2 accumulation and nitrate/nitrite dynamics. Sampling was further coordinated with sampling for DNA/RNA analysis by the Stewart lab

4)  $N_2O$  formation. We investigated the pathways of N<sub>2</sub>O formation in three experiments with water from the oxycline (Station 8T), the secondary chlorophyll maximum (Station 4T), and the secondary nitrite maximum (Station 9F), respectively. Each time experimental treatments included addition of <sup>15</sup>N ammonium, <sup>15</sup>N nitrate, <sup>18</sup>O water, or <sup>18</sup>O oxygen, and incubation at fixed oxygen levels ranging from anoxia to 15  $\mu$ M, which, in combination, will reveal the relative importance of nitrifiers and denitrifiers in N<sub>2</sub>O accumulation. The sampling of the water column was coordinated with sampling for DNA/RNA analysis by the Stewart lab.



Figure 10. Rosette sampling for bottle incubations.

5) *Nitrite-dependent methane cycling*. We investigated the potential for methane cycling and it's coupling to nitrate and nitrite reduction at five depths in the OMZ core at Stations 6, 8, and 10. For this we employed anoxic incubations with <sup>13</sup>C bicarbonate for methanogenesis (Stns 6T and 8T only), <sup>13</sup>C methane and <sup>15</sup>N nitrate or nitrite for methane oxidation. We further included a

treatment with <sup>15</sup>N/<sup>18</sup>O nitrite and acetylene specifically targeting oxygen production by bacteria related to candidate species Methylomirabilis oxyfera of the NC10 environmental clade. These experiments were accompanied by water column profiling for methane, DIC and their C isotope composition in collaboration with the Stewart lab and the Girguis lab at Harvard University, and by sampling for DNA/RNA analysis and enrichment for methanotrophs by the Stewart lab. In addition unaltered samples for potential rate determinations of methanogenesis and methane oxidation using radioisotopes were collected from Stations 6T and 8T for the Girguis lab.

6) *N transformation - quadrupole MS*. In a collaboration with the Altabet lab we tested the potential for shipboard analyses of <sup>15</sup>N transformations by quadrupole MS. Incubations of OMZ core water with <sup>15</sup>N nitrite were sampled both for onboard analysis and analysis at SDU. Preliminary evaluation of onboard results showed the production of <sup>15</sup>N N<sub>2</sub>. Such onboard analysis will be useful, e.g., to guide sampling and identify activity hotspots in the future.

7) *C and N assimilation*. In a second collaboration with the Altabet lab, we performed an incubation of OMZ core water (station 14F, 93 m) with <sup>15</sup>N ammonium and <sup>13</sup>C bicarbonate to evaluate the potential for analyzing carbon and nitrogen assimilation by specific groups of microbes sorted by flow cytometry. These incubations were further sampled for ammonium mineralization rates and anammox activity.

8) *In situ sampling*. We attempted to obtain water samples for process measurements from the OMZ core without any oxygen contamination, by deployment of an *in situ* glass ampoule sampler. All conventional sampling techniques, including the Niskin bottles and pump profiling system used on the cruise, are associated with small but possibly critical oxygen contaminations, when used in the anoxic OMZ core. However, repeated deployments of the pump and attempts of troubleshooting were unsuccessful.

#### v. Picocyanobacteria in the OMZ - Ulloa

<u>Team members</u>: Montserrat Aldunate (grad student), Gadiel Alarcón (senior tech), Osvaldo Ulloa (PI, not on cruise).

#### Cruise objectives:

The main goal of our group is gain new understanding of the role of picocyanobacteria in mediating nutrient cycling and energy flow in marine OMZs, and of the genetic and phenotypic characteristics of OMZ Prochlorococcus.

#### Cruise tasks:

1)  ${}^{13}HCO_3^- + {}^{15}NO_3^-$  experiments. Carbon fixation and nitrate assimilation

We performed five experiments collecting water from the DCM using the rosette or PPS.

#### Stations: 4T, F8, 7T, 3T, 12F.

For each experiment, we filled 10 bottles:

T0:

2 bottles for carbon and nitrogen isotopic fractionation 2 bottles for RNA (qPCR)

Tf (after 12 hours):

3 bottles in dark for carbon and nitrogen isotopic fractionation + RNA(qPCR).3 bottles exposed to blue light for carbon and nitrogen fractionation + RNA(qPCR).

2)  $^{13}Glucose + ^{15}NO_3$  experiments. Glucose intake and nitrate assimilation

# Stations: F8, 8T, 14F

Potential glucose intake by metagenomic data from ETSP: The same method that above, but using  ${}^{13}$ Glucose +  ${}^{15}$ NO<sub>3</sub><sup>-</sup>

3) nanoSIMS  $^{13}HCO_3^{-} + {}^{15}NO_3^{-}$  experiments. Carbon fixation and nitrate assimilation.

#### Station: 10T

The objective of nanoSIMS and nanoSIMS/FISH is follow, in 4 different times, the isotopic markers ( ${}^{13}\text{HCO}_{3}^{-}$  +  ${}^{15}\text{NO}_{3}^{-}$ ) and identified by CARD-FISH which populations are doing carbon fixation and nitrate assimilation.



Chew et al., 2014)

We did the following:

We fill 10 bottles:

T0: sampling without incubation.

2 bottles for carbon and nitrogen isotopic fractionation2 bottles for RNA (qPCR of key genes).20 ml for nanoSIMS and 20 ml for nanoSIMS/FISH.

T1, T2 and T3:

|         | Bottle 5      | vol (ml) | Bottle 6      | vol (ml) |  | Bottle 7      | vol (ml) |  |
|---------|---------------|----------|---------------|----------|--|---------------|----------|--|
| Dark    | Rates (C+N)   | 530      | Rates         | 530      |  | Rates         | 530      |  |
|         | RNA           | 530      | RNA           | 530      |  | RNA           | 530      |  |
|         | nanoSIMS      | 20       | nanoSIMS      | 20       |  | nanoSIMS      | 20       |  |
|         | nanoSIMS/FISH | 20       | nanoSIMS/FISH | 20       |  | nanoSIMS/FISH | 20       |  |
|         | Total         | 1100     | Total         | 1100     |  | Total         | 1100     |  |
|         |               |          |               |          |  |               |          |  |
|         | Bottle 8      |          | Bottle 9      |          |  | Bottle 10     |          |  |
|         | Rates         | 530      | Rates         | 530      |  | Rates         | 530      |  |
| الم الم | RNA           | 530      | RNA           | 530      |  | RNA           | 530      |  |
| Light   | nanoSIMS      | 20       | nanoSIMS      | 20       |  | nanoSIMS      | 20       |  |
|         | nanoSIMS/FISH | 20       | nanoSIMS/FISH | 20       |  | nanoSIMS/FISH | 20       |  |
|         | Total         | 1100     | Total         | 1100     |  | Total         | 1100     |  |
|         |               |          |               |          |  |               |          |  |
|         | _             |          |               |          |  |               |          |  |
|         | T1= 3 hrs     | ;        | T2 = 6 hr     | ſS       |  | T3 = 12 h     | ſS       |  |
|         |               |          |               |          |  |               |          |  |

4) nanoSIMS  $^{13}$ Glucose +  $^{15}NO_3^{-}$  experiments. Glucose intake and nitrate assimilation.

#### Station: 10F

The same method that above, but amending with  ${}^{13}$ Glucose +  ${}^{15}$ NO<sub>3</sub><sup>-</sup>

5)  $^{13}HCO_3^{-} + {}^{15}NO_3$  incubations for cell sorting. Carbon fixation and nitrate assimilation.

Isotopic fractionation from a single population (cell sorting) in natural communities from DCM and after incubation of this community with  ${}^{13}\text{HCO}_3{}^2$  +  ${}^{15}\text{NO}_3$ 

#### Station: 9T

T0: Concentration of cells for cell sorting without incubation.

Tf (12 hrs): Concentration of cells for cell sorting after incubation in light/dark of 6 bottles with  ${}^{13}\text{HCO}_3^-$  +  ${}^{15}\text{NO}_3$ 

Aditional tasks:

- For all these experiments seawater was collected for: Flow Cytometry, DNA, RNA, HPLC and Single Cell Genomics samples.
- Discrete sampling from PPS downcast:

- 1) Nutrients and flow cytometry (Station 10T; Cast NH14\_PPS\_9): Discrete samples were taken every 30 seconds between 0-150 m depth. We did a total of 61 samples estimating one sampling every 3 m depth.
- 2) Flow cytometry: Discrete samples were taken every 1 min between 0-150 m depth, estimating 1 sample every 4 m depth.

| Station-Cast      | Samples number |
|-------------------|----------------|
| 3T - NH14_PPS_12  | 42             |
| 10F - NH14_PPS_14 | 42             |
| 12F - NH14_PPS_16 | 45             |

• Sampling and reading for ammonium concentration (attached file: "NH1410 – Ammonium")

#### vi. O2 distributions and DCM microbial activity - Revsbech

Team members: Emilio Garcia-Robledo (postdoc), Niels Peter Revsbech (PI, not on cruise)

<u>Cruise objectives</u>: The broad goal was to characterize the oxygen distribution along the OMZ, the metabolism of the microbial community of the depth chlorophyll maximum (DCM) and the regulation of metabolic processes at low oxygen concentrations.

#### Cruise tasks:

1) In situ STOX measurements. I connected an in situ STOX unit to the CTD for the accurate measurements of low oxygen concentrations and the determination of the real Anoxic Core in the OMZ. The oxygen sensor of the CTD use to have an offset of  $1\mu$ M, however oxygen concentrations at nanomolar concentrations have been show to inhibit some anaerobic processes and cannot be resolved with the common CTD sensor. The unit was connected to the data collection of the CTD so an Oxygen profile will be available from each CTD cast of the cruise (with some exceptions). Another in situ STOX unit was connected to the CTD of the PPS. Thus, a high resolution oxygen concentration profile will be also available for each PPS cast.

2) Oxygen metabolism at the DCM. The accumulation of Prochlorococcus at the DCM implies a net growth of this population at this depth. The DCM use to be located just below the oxycline, in complete anoxic conditions or with very low oxygen concentrations (< 0.5  $\mu$ M) and at very low light conditions (about 0.1% of surface irradiance). The main focus of my lab incubations was to simulate the natural conditions occurring at the DCM and measure the net metabolism of the community at oxygen concentrations below 0.5 $\mu$ M. For that purpose, dark incubation and 3 light intensities were used (10, 20 and 40  $\mu$ E m-2 s-1), using a blue light with a spectrum similar to in situ conditions. The evolution of the low oxygen concentration was followed for a period of 12 hours inside the all glass incubation bottles to obtain net rates (net community production and respiration in darkness).

3) *Carbon fixation rates at DCM*. parallel to the oxygen metabolism measurements, 13C-HCO3 was injected to each incubation bottle in order to measure the net carbon fixation rate and correlate it with the measurements of oxygen.

4) *Effect of light in the nitrogen cycling at DCM*. primary production, considered as an in situ production of organic compounds and oxygen, could have an effect on both aerobic and anaerobic processes of the N cycling. In order to measure a possible effect, 15N-NH4 or 15N-NO2 were injected to the incubation bottles as described for O2 metabolism. After 12-15 hours of incubations, samples for the later analysis of 15N gases were collected.

5) *Other*. Samples for analysis of community transcription in response to light gradients were collected by Stewart's group to complement incubation experiments (Station F13).

# vii. DIC chemistry - Hernandez-Ayon

Team members: Orion Norzagaray (grad student) and Martin Hernandez-Ayon (PI).

<u>Cruise objectives</u>: The broad goal of our group is determine the distribution and concentration of dissolved inorganic carbon (DIC) in the OMZ. These data will be analyzed in relationship to oxygen and nutrient gradients to better understand the carbon cycle in this region.

# Cruise tasks:

1) *DIC/pH sampling*. We collected discrete samples for DIC and pH over depth gradients at coastal and offshore sites in the ETNP OMZ. At each station, general water column parameters were collected via vertical depth surveys using standard oceanographic equipment (CTD-rosette at most stations). Seawater collections for DIC and pH samples were done by rosette casts to discrete depths covering the low-oxygen zones from an average of 12 depths targeting key water column features: the oxic photic zone, oxycline (upper), OMZ interface, secondary chlorophyll maximum, nitrite/salinity maximum, and anoxic OMZ core. In some stations deep profiles were collected. Almost all samples were analyzed aboard ship using an infrared CO<sub>2</sub> analyzer and a potentiometric pH system with controlled temperature. In addition, a subset of water samples will be returned to Mexico (Universidad Autónoma de Baja California) for further analysis. In total, we obtained 28 profiles with ~350 measurements.

2) *PPS profile sampling (400 m)*. High-resolution DIC profiles were measured using samples collected every 6 m during the downcast of the PPS. These samples were obtained by connecting the PPS outlet directly to an auto-DIC-analyzer. The PPS pumped at a rate of ~2.7 l min-1 about 4m min-1 and had a pump-to-deck time of 240 s and a pump-to-DIC analyzer time of 320 s. In addition, during the downcast of the PPS, we collected discrete samples every 1.5 minutes (~3 m) for analysis of both DIC and pH. A total of 10 PPS profiles were measured during the cruise, consisting of 596 DIC measurements and 496 pH measurements.

3) *Float drift monitoring*. We sampled for DIC and pH during the float drift study from May 28 to June 1. Samples were collected during three PPS deployments (with high-resolution measurements; May 28, 29, 31) and one CTD-Rosette deployment (June 1), with sampling sites

as close to the actual or predicted positions of the drifting APL floats as possible. Collections for DIC and pH samples averaged 37 samples per profile by PPS, plus an additional 28 discrete depths/samples targeting key water column features: the oxic photic zone, oxycline (upper), OMZ interface, secondary chlorophyll maximum, nitrite/salinity maximum, anoxic OMZ core, and deep water from beneath the OMZ. All samples were analyzed aboard ship.

#### **VI. References**

Beman JM. Popp BN, Alford SE. 2012. Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol Oceanogr. 57:711-726.

Beman JM, Leilei Shih J, Popp BN. 2013. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME J. 7: 2192-2205.

Beman JM, Carolan MT. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone. Nat Commun. 2013;4:2705.

Bourbonnais A, Lehmann MF, Waniek JJ, Schulz-Bull DE. 2009. Nitrate isotope anomalies reflect  $N_2$  fixation in the Azores Front region (subtropical NE Atlantic). J Geophys Res. 114:C03003.

Bourbonnais A, Lehmann MF, Butterfield DA, Juniper SK. 2012. Subseafloor nitrogen transformations in diffuse hydrothermal vent fluids of the Juan de Fuca Ridge evidenced by the isotopic composition of nitrate and ammonium. Geochem Geophys Geosyst. 13:Q02T01.

Cassman N, Prieto-Davó A, Walsh K, Silva GG, Angly F, Akhter S, Barott K, Busch J, McDole T, Haggerty JM, Willner D, Alarcón G, Ulloa O, DeLong EF, Dutilh BE, Rohwer F, Dinsdale EA. 2012. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 14:3043-65.

Charoenpong C, Bristow LA, Altabet MA (in press) A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition. Limnol Oceanogr Meth.

Brandes JA, Devol AH, Yoshinari, T, Jayakumar DA, Naqvi SWA. 1998. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol Oceanogr. 43:1680-1689.

Casciotti KL, McIlvin MR. 2007. Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Mar Chem. 107:184-201.

Casciotti KL. 2009. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta 73: 2061-2076.

Cline JD, Kaplan IR. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific ocean. Mar Chem. 3:271-299.

Codispoti LA. 2007. An oceanic fixed nitrogen sink exceeding 400 Tg N a<sup>-1</sup> vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4:233-253.

Dalsgaard T, Thamdrup B, Farias L, Revsbech NP. 2012. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol Oceanogr. 57:1331–1346.

Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of  $CO_2$  in the ocean. Nature. 387:272-275.

Granger, J., Sigman, D.M., Lehmann, M.F., Tortell, P.D., 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology and Oceanography 53 (6), 2533-2545.

Kalvelage T, Lavik G, Lam P, Contrras S, Arteaga L, Loscher CR, Oschlies A, Paulmier A, Stramma L, Kuypers MMM. 2013. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geoscience. 6: 228-234.

Knapp, A. N., Sigman, D. M., and Lipschultz, F. 2005. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time-series Study site. Global Biogeochemical Cycles 19, GB1018, doi:10.1029/2004GB002320.

McIlvin, M. R., and Altabet, M. A. 2005. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Analytical Chemistry 77, 5589–5595.

McIlvin, M. M. and Casciotti, K. L, 2010. Automated stable isotopic analysis of dissolved nitrous oxide at natural abundance levels, Limnology and Oceanography- Methods 8, 54–66.

Podlaska A, Wakeham SG, Fanning KA, Taylor GT. Microbial community structure and productivity in the oxygen minimum zone of the eastern tropical North Pacific. Deep Sea Res Part I Oceanogr Res Pap. 2012;66:77–89.

Rush D, Wakeham SG, Hopmans EC, Schouten S, Damsté JSS. 2012. Biomarker evidence for anammox in the oxygen minimum zone of the Eastern Tropical North Pacific. Organic Geochemistry. 53:80–87.

Thamdrup B, et al. 2006. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr. 51:2145–2156.

Thamdrup B, Dalsgaard T, Revsbech NP. 2012. Widespread functional anoxia in the oxygen minimum zone of the eastern South Pacific. Deep Sea Res Part I Oceanogr Res Pap. 65:36–45.

van Geen A, Zheng Y, Bernhard JM, Cannariato KG, Carriquiry J, Dean WE, Eakins BW, Ortiz JD, Pike J. 2003. On the preservation of laminated sediments along the western margin of North America, Paleoceanography. 18:1098.

Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nature Rev Microbiol. 10:381-394.

# Appendix A - NH1410 Operations $\log$

(modified from bridge record file '1410 - STEWART - VOYAGE CALCULATOR 3-0.xls')

|           |          |       |           |            |                         | Rosette / PPS CTD log file ID or   |
|-----------|----------|-------|-----------|------------|-------------------------|------------------------------------|
| Station   | Date     | Time* | Lat N     | Long W     | Operation               | *comments                          |
| San Diego | 10-May   | 0900  | 32 42.35  | 117 14.16  |                         |                                    |
|           |          |       |           |            |                         |                                    |
|           |          |       |           |            |                         | * test of rosette CTD, and PPS CTD |
|           |          |       |           |            |                         | and pump; CTD pump and             |
| test      | 10-May   | 1143  | 32 37.239 | 117 29.838 | PPS deployed            | communication problems (resolved)  |
| test      | 10-May   | 1154  | 32 37.239 | 117 29.840 | PPS recovered           |                                    |
| test      | 10-May   | 1233  | 32 37.545 | 117 29.877 | CTD deployed            |                                    |
| test      | 10-May   | 1245  | 32 37.746 | 117 29.867 | CTD @ 35m, malfunction  |                                    |
| test      | 10-May   | 1254  | 32 37.773 | 117 29.889 | CTD recovered           |                                    |
| test      | 10-May   | 1347  | 32 38.002 | 117 31.131 | CTD deployed            |                                    |
| test      | 10-May   | 1350  | 32 38.040 | 117 31.159 | CTD @ 10m, malfunction  |                                    |
| test      | 10-May   | 1357  | 32 38.054 | 117 31.164 | CTD recovered           |                                    |
| test      | 10-May   | 1410  | 32 38.098 | 117 31.275 | PPS deployed            |                                    |
| test      | 10-May   | 1415  | 32 38.112 | 117 31.311 | PPS @ 50m               |                                    |
| test      | 10-May   | 1420  | 32 38.124 | 117 31.352 | PPS recovered           |                                    |
| test      | 10-May   | 1515  | 32 38.188 | 117 32.156 | CTD deployed            |                                    |
| test      | 10-May   | 1520  | 32 38.195 | 117 32.258 | CTD @ 10m, malfunction  |                                    |
| test      | 10-May   | 1536  | 32 38.194 | 117 32.292 | CTD recovered           |                                    |
| Soledad   | 12-May   | 2245  | 25 11.939 | 112 42.113 | CTD deployed            | NH1410_01_01                       |
| Soledad   | 12-May   | 2258  | 25 11.853 | 112 42.287 | CTD @ 520m              |                                    |
| Soledad   | 12-May   | 2355  | 25 11.553 | 112 42.995 | CTD recovered           |                                    |
| dunk test | 13-May   | 1326  | 23 36.590 | 111 06.003 | Float 77 deployed       | * float test; no problems          |
| dunk test | 13-May   | 1337  | 23 36.590 | 111 06.003 | Float 77 recovered      |                                    |
| dunk test | 13-May   | 1400  | 23 36.564 | 111 05.919 | Float 78 deployed       |                                    |
| dunk test | 13-May   | 1406  | 23 36.556 | 111 05.887 | Float 78 recovered      |                                    |
| 4T        | 15-May   | 0600  | 18 53.873 | 106 17.977 | CTD deployed            | NH1410_04_01                       |
| 4T        | 15-May   | 0632  | 18 53.933 | 106 17.982 | CTD @ 1200m             |                                    |
| 4T        | 15-May   | 0735  | 18 53.936 | 106 17.823 | CTD on deck             |                                    |
| 4T        | 15-May   | 1007  | 18 54.794 | 106 18.417 | PPS Instrument deployed | NH14_PPS_01F                       |
| АТ        | 15 May   | 1012  | 10 54 705 | 106 10 427 | PPS Instrument          |                                    |
| 41<br>4T  | 15-IVIdy | 1012  | 10 54.705 | 100 10.427 | DDC Instrument deployed | 1                                  |
| 41        | 12-IVIAY | 1010  | 18 54.771 | 100 18.418 | PPS Instrument deployed | 1                                  |
| 4T        | 15-May   | 1054  | 18 54.632 | 106 18.250 | recovered               |                                    |
| 4T        | 15-May   | 1205  | 18 53.856 | 106 18.004 | CTD deployed            | NH1410_04_02                       |
| 4T        | 15-May   | 1222  | 18 53.840 | 106 17.966 | CTD @ 400m              |                                    |
| 4T        | 15-May   | 1316  | 18 53.800 | 106 18.068 | CTD recovered           |                                    |

|    | 45.84  | 4550 | 40 50 077 | 406 47 074 |                        |                                    |
|----|--------|------|-----------|------------|------------------------|------------------------------------|
| 41 | 15-May | 1558 | 18 53.977 | 106 17.974 | PPS deployed           |                                    |
| 41 | 15-May | 1610 | 18 53.977 | 106 17.974 | PPS on deck            |                                    |
| 41 | 15-May | 1620 | 18 53.965 | 106 17.961 | CTD deployed           | NH1410_04_03                       |
| 41 | 15-May | 1634 | 18 54.019 | 106 18.125 | CTD @ 150m             |                                    |
| 41 | 15-May | 1703 | 18 53.999 | 106 18.252 | CTD on deck            |                                    |
| 41 | 15-May | 1738 | 18 53.976 | 106 17.959 | PPS deployed           |                                    |
| 41 | 15-May | 1830 | 18 53.614 | 106 18.217 | PPS on deck            |                                    |
|    |        |      |           |            |                        | NH1410_05_01, *begin float survey; |
|    |        |      |           |            |                        | 19N-21N, 107W (stations F1-F7,     |
| F1 | 15-May | 2340 | 18 59.927 | 106 59.968 | CTD deployed           | 20nm apart)                        |
| F1 | 15-May | 2358 | 18 59.810 | 107 00.113 | CTD @ 500m             |                                    |
| F1 | 16-May | 0040 | 18 59.603 | 107 00.477 | CTD on deck            |                                    |
| F2 | 16-May | 0303 | 19 19.979 | 107 00.042 | CTD deployed           | NH1410_06_01FALBd                  |
| F2 | 16-May | 0317 | 19 19.995 | 107 00.000 | CTD @ 500m             |                                    |
| F2 | 16-May | 0355 | 19 20.003 | 107 00.035 | CTD on deck            |                                    |
| F3 | 16-May | 0602 | 19 40.291 | 107 00.057 | CTD deployed           | NH1410_07_01                       |
| F3 | 16-May | 0616 | 19 40.223 | 107 00.038 | CTD @ 500m             |                                    |
| F3 | 16-May | 0656 | 19 39.995 | 107 00.080 | CTD on deck            |                                    |
| F4 | 16-May | 0900 | 20 00.062 | 107 00.037 | CTD deployed           | NH1410_08_01                       |
| F4 | 16-May | 0919 | 20 00.214 | 107 00.122 | CTD @ 500m             |                                    |
| F4 | 16-May | 1003 | 20 00.486 | 107 00.411 | CTD on deck            |                                    |
| F5 | 16-May | 1205 | 20 19.965 | 107 00.000 | CTD deployed           | NH1410_09_01                       |
| F5 | 16-May | 1222 | 20 20.018 | 107 00.158 | CTD @ 500m             |                                    |
| F5 | 16-May | 1308 | 20 19.712 | 107 00.231 | CTD on deck            |                                    |
| F6 | 16-May | 1522 | 20 39.907 | 107 00.199 | CTD deployed           | NH1410_10_01FALBd                  |
| F6 | 16-May | 1537 | 20 39.903 | 107 00.201 | CTD @ 500m             |                                    |
| F6 | 16-May | 1628 | 20 40.020 | 107 00.000 | CTD on deck            |                                    |
| F7 | 16-May | 1832 | 21 00.104 | 107 00.089 | CTD deployed           | NH1410_11_01                       |
| F7 | 16-May | 1850 | 21 00.077 | 107 00.210 | CTD @ 500m             |                                    |
| F7 | 16-May | 1954 | 20 59.780 | 107 00.219 | CTD on deck            |                                    |
| F4 | 17-May | 0218 | 19 59.932 | 107 00.059 | CTD deployed           | NH1410_12_01                       |
| F4 | 17-May | 0236 | 19 59.834 | 107 00.137 | CTD @ 500m             |                                    |
| F4 | 17-May | 0317 | 19 59.671 | 107 00.408 | CTD on deck            |                                    |
| F4 | 17-May | 0525 | 19 59.980 | 107 00.008 | APL Float #77 deployed |                                    |
| F4 | 17-May | 0806 | 19 59.880 | 107 00.136 | CTD deployed           | NH1410 13 01                       |
| F4 | 17-May | 0822 | 19 59.885 | 107 00.250 | CTD @ 500m             |                                    |
| F4 | 17-May | 0858 | 19 59.920 | 107 00.554 | CTD recovered          |                                    |
|    | ,      |      |           |            | ARGO launched,         |                                    |
| F4 | 17-May | 1157 | 19 59.925 | 107 00.963 | recovered              | * dunk test                        |
| F4 | 17-May | 1339 | 20 01.308 | 107 00.996 | FLOAT #78 deployed     |                                    |
| F4 | 17-May | 1401 | 20 01.130 | 107 00.903 | CTD deployed           | NH1410_14_01                       |
| F4 | 17-May | 1419 | 20 01.104 | 107 01.141 | CTD @ 500m             |                                    |
| F4 | 17-May | 1506 | 20 01.026 | 107 01.719 | CTD on deck            |                                    |

| F4 | 17-May | 2107  | 20 02.399 | 107 02.597 | CTD deployed            | NH1410_15_01                     |
|----|--------|-------|-----------|------------|-------------------------|----------------------------------|
| F4 | 17-May | 2125  | 20 02.418 | 107 02.625 | CTD @ 500m              |                                  |
| F4 | 17-May | 2217  | 20 02.661 | 107 02.511 | CTD on deck             |                                  |
| F4 | 17-May | 2228  | 20 02.642 | 107 02.563 | ARGO float deployed     |                                  |
| F4 | 18-May | 0119  | 20 03.784 | 107 02.777 | CTD deployed            | NH1410_16_01                     |
| F4 | 18-May | 0137  | 20 03.654 | 107 02.847 | CTD @ 500m              |                                  |
| F4 | 18-May | 0213  | 20 03.367 | 107 02.930 | CTD on deck             |                                  |
| F4 | 18-May | 0415  | 20 03.605 | 107 03.027 | CTD deployed            | NH1410_17_01                     |
| F4 | 18-May | 0418  | 20 03.566 | 107 03.019 | CTD @ 200m              |                                  |
| F4 | 18-May | 0449  | 20 03.383 | 107 02.973 | CTD on deck             |                                  |
| F4 | 18-May | 0741  | 20 04.507 | 107 04.521 | CTD deployed            | NH1410_18_01                     |
| F4 | 18-May | 0759  | 20 04.622 | 107 04.599 | CTD @ 500m              |                                  |
| F4 | 18-May | 0849  | 20 04.863 | 107 04.728 | CTD on deck             |                                  |
| F4 | 18-May | 0930  | 20 04.965 | 107 04.977 | CTD deployed            | NH1410_19_01                     |
| F4 | 18-May | 0942  | 20 04.959 | 107 05.056 | CTD @ 250m              |                                  |
| F4 | 18-May | 1010  | 20 04.946 | 107 05.104 | CTD on deck             |                                  |
| F4 | 18-May | 1105  | 20 04.975 | 107 05.344 | CTD deployed            | NH1410_20_01                     |
| F4 | 18-May | 1115  | 20 05.005 | 107 05.399 | CTD @ 150m              |                                  |
| F4 | 18-May | 1143  | 20 05.072 | 107 05.398 | CTD on deck             |                                  |
| F4 | 18-May | 1301  | 20 05.710 | 107 04.485 | CTD deployed            | NH1410_21_01                     |
| F4 | 18-May | 1318  | 20 05.713 | 107 04.435 | CTD @ 500m              |                                  |
| F4 | 18-May | 1406  | 20 05.543 | 107 04.239 | CTD on deck             |                                  |
| F4 | 18-May | 1532  | 20 05.825 | 107 04.637 | CTD deployed            | NH1410_22_01                     |
| F4 | 18-May | 1548  | 20 05.913 | 107 04.560 | CTD @ 400m              |                                  |
| F4 | 18-May | 1558  | 20 06.183 | 107 04.259 | CTD on deck             |                                  |
| F4 | 18-May | 1900  | 20 07.157 | 107 05.947 | CTD deployed            | NH1410_23_01                     |
| F4 | 18-May | 1919  | 20 07.117 | 107 05.873 | CTD @ 500m              |                                  |
| F4 | 18-May | 2010  | 20 07.137 | 107 05.653 | CTD on deck             |                                  |
| F4 | 19-May | 0045  | 20 07.699 | 107 04.802 | CTD deployed            | NH1410_24_01                     |
| F4 | 19-May | 0103  | 20 07.663 | 107 04.674 | CTD @ 500m              |                                  |
| F4 | 19-May | 0149  | 20 07.581 | 107 04.329 | CTD on deck             |                                  |
|    |        |       |           |            |                         | *communication failure; recovery |
| F4 | 19-May | ~0200 |           |            | APL Float #77 recovered | not logged by bridge             |
| 6T | 19-May | 1704  | 18 54.001 | 104 54.040 | CTD deployed            | NH1410_6T_01                     |
| 6T | 19-May | 1720  | 18 54.025 | 104 54.439 | CTD @ 300m              |                                  |
| 6T | 19-May | 1753  | 18 54.025 | 104 54.439 | CTD on deck             |                                  |
| 6T | 19-May | 1805  | 18 54.001 | 104 54.412 | PPS deployed            | NH14_PPS_02                      |
| 6T | 20-May | 0303  | 18 52.236 | 104 51.793 | PPS on deck             |                                  |
| 6T | 20-May | 0336  | 18 53.995 | 104 54.013 | CTD deployed            | NH1410_6T_02                     |
| 6T | 20-May | 0412  | 18 53.995 | 104 53.980 | CTD @ 1200m             |                                  |
| 6T | 20-May | 0502  | 18 54.030 | 104 53.953 | CTD on deck             |                                  |
| 6T | 20-May | 0619  | 18 54.027 | 104 54.076 | Deploy PPS              | NH14_PPS_03                      |
| 6T | 20-May | 1207  | 18 54.692 | 104 54.020 | PPS on deck             |                                  |

|    |        |      |            |            |               | NH1410_6T_03, *mislabeled as<br>NH1410_6T_03 in CTD files; should |
|----|--------|------|------------|------------|---------------|-------------------------------------------------------------------|
| 7T | 20-May | 1810 | 18 12.023  | 104 12.160 | CTD deployed  | be NH1410_7T_01                                                   |
| 7T | 20-May | 1821 | 18 12.148  | 104 12.336 | CTD @ 250m    |                                                                   |
| 7T | 20-May | 1859 | 18 12.110  | 104 12.221 | CTD on deck   |                                                                   |
| 7T | 20-May | 1950 | 18 12.017  | 104 11.891 | CTD deployed  | NH1410_7T_02                                                      |
| 7T | 20-May | 2002 | 18 11.985  | 104 11.824 | CTD @ 150m    |                                                                   |
| 7T | 20-May | 2028 | 18 11.965  | 104 11.881 | CTD on deck   |                                                                   |
| 7T | 20-May | 2138 | 8 11.939   | 104 12.182 | PPS deployed  | NH14_PPS_04                                                       |
| 7T | 21-May | 0758 | 18 03.932  | 104 12.606 | PPS recovered |                                                                   |
| 7T | 21-May | 0826 | 18 12.053  | 104 12.155 | CTD deployed  | NH1410_7T_03                                                      |
| 7T | 21-May | 0857 | 18 11.989  | 104 12.282 | CTD @ 1200m   |                                                                   |
| 7T | 21-May | 0946 | 18 12.270  | 104 12.730 | CTD on deck   |                                                                   |
| 7T | 21-May | 1059 | 18 11.982  | 104 11.988 | CTD deployed  | NH1410_7T_04                                                      |
| 7T | 21-May | 1116 | 18 11.917  | 104 12.079 | CTD @ 400m    |                                                                   |
| 7T | 21-May | 1151 | 18 11.834  | 104 12.110 | CTD on deck   |                                                                   |
| 7T | 21-May | 1315 | 18 12.081  | 104 11.990 | CTD deployed  | NH1410_7T_05                                                      |
| 7T | 21-May | 1330 | 18 12.140  | 104 12.120 | CTD @ 300m    |                                                                   |
| 7T | 21-May | 1349 | 18 12.201  | 104 12.210 | CTD on deck   |                                                                   |
| 7T | 21-May | 1423 | 18 12.462  | 104 12.326 | CTD deployed  | NH1410_7T_06                                                      |
| 7T | 21-May | 1437 | 18 12.500  | 104 12.380 | CTD @ 150m    |                                                                   |
| 7T | 21-May | 1503 | 18 12.524  | 104 12.455 | CTD on deck   |                                                                   |
| 8T | 21-May | 1917 | 18 11.885  | 104 53.804 | CTD deployed  | NH1410_8T_01                                                      |
| 8T | 21-May | 1934 | 18 11.858  | 104 53.703 | CTD @ 300m    |                                                                   |
| 8T | 21-May | 1952 | 18 11.870  | 104.53.802 | CTD on deck   |                                                                   |
| 8T | 21-May | 2002 | 18 11.904  | 104 53.913 | PPS deployed  | NH14_PPS_05 and 06                                                |
| 8T | 22-May | 0702 | 18 10.858  | 104 52.235 | PPS on deck   |                                                                   |
| 8T | 22-May | 0757 | 18 11.936  | 104 53.847 | CTD deployed  | NH1410_8T_02                                                      |
| 8T | 22-May | 0830 | `18 12.085 | 104 53.549 | CTD @ 1200m   |                                                                   |
| 8T | 22-May | 0919 | 18 11.883  | 104 53.083 | CTD on deck   |                                                                   |
| 8T | 22-May | 1111 | 18 11.968  | 104 54.163 | CTD deployed  | NH1410_8T_03                                                      |
| 8T | 22-May | 1128 | 18 11.966  | 104 53.986 | CTD @ 500m    |                                                                   |
| 8T | 22-May | 1219 | 18 11.788  | 104 53.644 | CTD on deck   |                                                                   |
| 8T | 22-May | 1244 | 18 11.911  | 104 53.905 | CTD deployed  | NH1410_8T_04                                                      |
| 8T | 22-May | 1258 | 18 11.854  | 104 54.065 | CTD @ 500m    |                                                                   |
| 8T | 22-May | 1344 | 18 11.834  | 104 54.411 | CTD on deck   |                                                                   |
| 8T | 22-May | 1401 | 18 11.981  | 104 53.836 | CTD deployed  | NH1410_8T_05                                                      |
| 8T | 22-May | 1419 | 18 11.880  | 104 53.990 | CTD @ 500m    |                                                                   |
| 8T | 22-May | 1504 | 18 11.427  | 104 54.350 | CTD on deck   |                                                                   |
| 8T | 22-May | 1525 | 18 11.976  | 104 53.913 | CTD deployed  | NH1410_8T_06                                                      |
| 8T | 22-May | 1539 | 18 11.791  | 104 53.958 | CTD @ 300m    |                                                                   |
| 8T | 22-May | 1612 | 18 11.316  | 104 53.957 | CTD on deck   |                                                                   |
| 8T | 22-May | 1756 | 18 11.959  | 104 53.926 | CTD deployed  | NH1410_8T_07                                                      |

| 8T  | 22-May           | 1808 | 18 11.878 | 104 53.986 | CTD @ 200m    |                                     |
|-----|------------------|------|-----------|------------|---------------|-------------------------------------|
| 8T  | 22-May           | 1833 | 18 11.629 | 104 53.973 | CTD on deck   |                                     |
| 8T  | 22-May           | 2002 | 18 12.016 | 104 53.669 | CTD deployed  | NH1410_8T_08                        |
| 8T  | 22-May           | 2020 | 18 11.856 | 104 53.600 | CTD @ 120m    |                                     |
| 8T  | 22-May           | 2041 | 18 11.888 | 104 53.582 | CTD on deck   |                                     |
| 9T  | 22-May           | 2304 | 18 11.998 | 105 12.006 | PPS deployed  | NH14_PPS_07                         |
| 9T  | 23-May           | 0650 | 18 13.510 | 105 13.628 | PPS on deck   |                                     |
| 9T  | 23-May           | 0712 | 18 12.037 | 105 12.064 | CTD deployed  | NH1410_9T_01                        |
| 9T  | 23-May           | 0745 | 18 12.029 | 105 12.020 | CTD @ 1200m   |                                     |
| 9T  | 23-May           | 0830 | 18 12.099 | 105 11.990 | CTD on deck   |                                     |
| 9T  | 23-May           | 1024 | 18 12.348 | 105 12.232 | CTD deployed  | NH1410_9T_02                        |
| 9T  | 23-May           | 1052 | 18 12.459 | 105 12.270 | CTD @ 1200m   |                                     |
| 9T  | 23-May           | 1148 | 18 12.801 | 105 12.226 | CTD on deck   |                                     |
| 9T  | 23-May           | 1309 | 18 11.842 | 105 11.955 | CTD deployed  | NH1410_9T_03                        |
| 9T  | 23-May           | 1403 | 18 11.945 | 105 12.196 | CTD at 2800m  |                                     |
| 9T  | 23-May           | 1516 | 18 11.790 | 105 12.039 | CTD on deck   |                                     |
| 9T  | 23-May           | 1626 | 18 12.142 | 105 12.000 | CTD deployed  | NH1410_9T_04                        |
| 9T  | 23-May           | 1641 | 18 12.073 | 105 11.955 | CTD @ 300m    |                                     |
| 9T  | 23-May           | 1715 | 18 12.053 | 105 11.686 | CTD on deck   |                                     |
| 10T | 24-May           | 0026 | 18 12 047 | 106 17 707 | DDS deployed  | NH14_PPS_08,08b, and 09, * PPS did  |
| 10T | 24-1viay         | 0020 | 18 12.047 | 106 17 705 | PPS recovered | not come out of water between casts |
| 10T | 24-1viay         | 0914 | 18 12.009 | 106 17 001 | CTD deployed  | NH1410 10T 01                       |
| 10T | 24-May           | 0927 | 18 11 925 | 106 18 135 | CTD @ 1200m   | 101410_101_01                       |
| 10T | 24-May           | 1038 | 18 11 960 | 106 18 481 | CTD on deck   |                                     |
| 10T | 24 May           | 1130 | 18 12 025 | 106 18 654 | CTD deployed  | NH1410 10T 02                       |
| 10T | 24 May<br>24-May | 1148 | 18 11 999 | 106 18 699 | CTD @ 200m    | 111110_101_02                       |
| 10T | 24 May<br>24-May | 1237 | 18 11 762 | 106 18 831 | CTD on deck   |                                     |
| 10T | 24-May           | 1259 | 18 12 031 | 106 18 007 | CTD deployed  | NH1410 10T 03                       |
| 10T | 24-May           | 1314 | 18 11.986 | 106 18.015 | CTD @ 300m    |                                     |
| 10T | 24-Mav           | 1333 | 18 12.007 | 106 17.980 | CTD on deck   |                                     |
| 10T | 24-Mav           | 1402 | 18 11.850 | 106 18.119 | CTD deployed  | NH1410 10T 04                       |
| 10T | 24-Mav           | 1420 | 18 11.971 | 106 18.090 | CTD @ 300m    |                                     |
| 10T | 24-May           | 1446 | 18 12.000 | 106 18.083 | CTD on deck   |                                     |
| 10T | ,<br>24-May      | 2059 | 18 12.031 | 106 18.129 | CTD deployed  | NH1410 10T 05                       |
| 10T | ,<br>24-May      | 2114 | 18 12.123 | 106 18.193 | CTD @ 300m    |                                     |
| 10T | ,<br>24-May      | 2141 | 18 12.269 | 106 18.263 | CTD recovered |                                     |
| 11T | ,<br>25-May      | 0528 | 18 12.077 | 107 29.955 | CTD deployed  | NH1410 11T 01                       |
| 11T | 25-May           | 0547 | 18 12.080 | 107 29.895 | CTD @ 200m    |                                     |
| 11T | 25-May           | 0618 | 18 12.071 | 107 29.841 | CTD on deck   |                                     |
| 11T | 25-May           | 0643 | 18 12.020 | 107 29.985 | PPS deployed  | NH14_PPS_10                         |
| 11T | 25-May           | 1311 | 18 12.504 | 107 29.907 | PPS on deck   |                                     |
| 11T | 25-May           | 1330 | 18 11.995 | 107 29.937 | CTD deployed  | NH1410_11T_02                       |

| 11T | 25-May      | 1357 | 18 11.996 | 107 29.890 | CTD @ 1200m  |                             |
|-----|-------------|------|-----------|------------|--------------|-----------------------------|
| 11T | 25-May      | 1435 | 18 11.993 | 107 30.136 | CTD on deck  |                             |
| 11T | 25-May      | 1535 | 18 12.010 | 107 29.970 | CTD deployed | NH1410_11T_03               |
| 11T | 25-May      | 1550 | 18 11.976 | 107 29.997 | CTD @ 200m   |                             |
| 11T | 25-May      | 1620 | 18 11.955 | 107 30.048 | CTD on deck  |                             |
| 11T | 25-May      | 1649 | 18 12.071 | 107 29.967 | CTD deployed | NH1410_11T_04               |
| 11T | 25-May      | 1704 | 18 12.167 | 107 30.015 | CTD @ 200m   |                             |
| 11T | 25-May      | 1732 | 18 12.294 | 107 30.033 | CTD on deck  |                             |
|     |             |      |           |            |              | NH1410_11T_05, *in situ RNA |
| 111 | 25-May      | 1832 | 18 11.951 | 107 29.939 | CID deployed | sampler (failed)            |
| 111 | 25-May      | 1849 | 18 11.9/1 | 107 29.941 | CTD @ 500m   |                             |
| 111 | 25-May      | 1933 | 18 11.993 | 107 29.919 | CTD on deck  | NH1/10 11T 06 *in situ RNA  |
| 11T | 25-May      | 1958 | 18 11.922 | 107 29.892 | CTD deployed | sampler (failed)            |
| 11T | 25-May      | 2013 | 18 11.889 | 107 29.857 | CTD @ 500m   |                             |
| 11T | 25-May      | 2100 | 18 11.813 | 107 29.773 | CTD on deck  |                             |
| 11T | 25-May      | 2112 | 18 11.810 | 107 29.801 | CTD deployed | NH1410 11T 07               |
| 11T | 25-May      | 2117 | 18 11.787 | 107 29.883 | CTD @ 150m   |                             |
| 11T | 25-May      | 2148 | 18 11.790 | 107 29.920 | CTD on deck  |                             |
| 2T  | ,<br>26-May | 0648 | 18 54.072 | 108 48.015 | CTD deployed | NH1410 2T 01                |
| 2T  | 26-May      | 0710 | 18 54.130 | 108 47.995 | CTD @ 200m   |                             |
| 2T  | 26-May      | 0745 | 18 54.269 | 108 47.925 | CTD on deck  |                             |
| 2T  | 26-May      | 0800 | 18 53.991 | 108 48.018 | PPS deployed | NH14_PPS_11                 |
| 2T  | 26-May      | 1010 | 18 54.067 | 108 48.353 | PPS @ 400m   |                             |
| 2T  | 26-May      | 1407 | 18 53.167 | 108 49.096 | PPS on deck  |                             |
| 2T  | 26-May      | 1430 | 18 54.010 | 108 48.049 | CTD deployed | NH1410_2T_02                |
| 2T  | 26-May      | 1455 | 18 54.020 | 108 48.141 | CTD @ 1200m  |                             |
| 2T  | 26-May      | 1540 | 18 54.089 | 108 48.190 | CTD on deck  |                             |
| 2T  | 26-May      | 1638 | 18 53.910 | 108 48.040 | CTD deployed | NH1410_2T_03                |
| 2T  | 26-May      | 1653 | 18 53.969 | 108 48.060 | CTD @300m    |                             |
| 2T  | 26-May      | 1718 | 18 54.130 | 108 48.147 | CTD on deck  |                             |
| 2T  | 26-May      | 1753 | 18 54.120 | 108 48.036 | CTD deployed | NH1410_2T_04                |
| 2T  | 26-May      | 1844 | 18 54.093 | 108 48.093 | CTD @ 2302m  |                             |
| 2T  | 26-May      | 1955 | 18 54.037 | 108 48.216 | CTD on deck  |                             |
| 2T  | 26-May      | 2048 | 18 54.072 | 108 48.012 | CTD deployed | NH1410_2T_05                |
| 2T  | 26-May      | 2101 | 18 54.128 | 108 48.085 | CTD @ 300m   |                             |
| 2T  | 26-May      | 2130 | 18 54.254 | 108 48.203 | CTD on deck  |                             |
| 3T  | 27-May      | 0538 | 18 54.201 | 107 29.922 | CTD deployed | NH1410_3T_01                |
| 3T  | 27-May      | 0550 | 18 54.228 | 107 29.844 | CTD @ 200m   |                             |
| 3T  | 27-May      | 0610 | 18 54.042 | 107 29.828 | CTD on deck  |                             |
| 3T  | 27-May      | 0622 | 18 54.042 | 107 29.785 | PPS deployed | NH14_PPS_12                 |
| 3T  | 27-May      | 1320 | 18 55.679 | 107 31.715 | PPS on deck  |                             |
| 3T  | 27-May      | 1350 | 18 54.049 | 107 30.084 | CTD deployed | NH1410_3T_02                |

| 3T     | 27-May   | 1405 | 18 54.050 | 107 30.083 | CTD @ 300m              |                                         |
|--------|----------|------|-----------|------------|-------------------------|-----------------------------------------|
| 3Т     | 27-May   | 1428 | 18 54.062 | 107 30.081 | CTD on deck             |                                         |
| 3Т     | 27-May   | 1530 | 18 54.103 | 107 30.027 | CTD deployed            | NH1410_3T_03                            |
| 3Т     | 27-May   | 1542 | 18 54.319 | 107 30.035 | CTD @ 150m              |                                         |
| 3Т     | 27-May   | 1608 | 18 54.039 | 107 29.954 | CTD on deck             |                                         |
| 3Т     | 27-May   | 1700 | 18 54.002 | 107 29.999 | CTD deployed            | NH1410_3T_04                            |
| 3Т     | 27-May   | 1728 | 18 54.027 | 107 30.012 | CTD @ 1200m             |                                         |
| 3Т     | 27-May   | 1811 | 18 54.027 | 107 30.043 | CTD on deck             |                                         |
| 3Т     | 27-May   | 1912 | 18 53.988 | 107 30.003 | CTD deployed            | NH1410_3T_05                            |
| 3Т     | 27-May   | 1926 | 18 54.019 | 107 30.024 | CTD @ 300m              |                                         |
| 3T     | 27-May   | 1954 | 18 53.909 | 107 30.013 | CTD recovered           |                                         |
| 27-    | 27       | 2446 | 40 54 475 | 40740400   | CTD developed           | NH1410_3T_06, *in deep water            |
| 31a    | 27-IVIAy | 2116 | 18 54.475 | 107 19.488 |                         | trough <sup>10</sup> 8nm E of stn 3     |
| 31a    | 27-IVIAy | 2216 | 18 54.503 | 107 19.340 | CTD @ 3000m             |                                         |
| 31a    | 27-IVIAy | 2330 | 18 54.523 | 107 19.018 | CTD recovered           | NU4 440, 27, 07                         |
| 31a    | 27-IVIAy | 0033 | 18 54.988 | 107 19.131 | CTD deployed            | NH1410_31_07                            |
| 31a    | 27-IVIAy | 0044 | 18 54.994 | 107 19.044 | CTD @ 150m              |                                         |
| 31a    | 27-IVIAy | 0101 | 18 54.997 | 107 18.907 | CTD on deck             | NU44 DDC 42                             |
| 8F-01  | 28-IVIAy | 1202 | 20 26.674 | 107 37.776 | PPS deployed            | NH14_PPS_13                             |
| 8F-02  | 28-iviay | 1912 | 20 28.876 | 107 40.668 | PPS on deck             |                                         |
|        | 20       | 2017 | 20 22 422 | 107 46 155 | ADI Flagt #77 developed | *start of float drift survey + diel RNA |
| 05.01  | 28-IVIAy | 2017 | 20 33.133 | 107 46.155 | APL Float #77 deployed  | collections                             |
| 9F-01  | 28-IVIdy | 2040 | 20 33.354 | 107 46.000 |                         | NH1410_9F_01                            |
| 9F-01  | 28-IVIdy | 2059 | 20 33.448 | 107 40.017 |                         |                                         |
| 9F-01  | 28-IVIdy | 2139 | 20 33.704 | 107 45.742 | CTD recovered           |                                         |
| 9F-02  | 29-IVIAy | 0709 | 20 33.120 | 107 40.530 |                         | NH1410_9F_02                            |
| 9F-02  | 29-IVIAy | 0724 | 20 33.187 | 107 46.570 | CTD @ 200m              |                                         |
| 9F-02  | 29-IVIAy | 0/55 | 20 33.429 | 107 40.30  | CTD on deck             | NU1410 105 01                           |
| 10F-01 | 29-IVIAy | 0835 | 20 30.723 | 107 49.214 | CTD deployed            | NH1410_10F_01                           |
| 10F-01 | 29-IVIAy | 0850 | 20 30.819 | 107 49.477 | CTD @ 400m              |                                         |
| 10-01  | 29-1viay | 0940 | 20 37.215 | 107 50.060 | CTD on deck             | NH14 PPS 14 and 15. *PPS did not        |
| 10F-02 | 29-May   | 1014 | 20 37.279 | 107 50.527 | PPS deployed            | come out of water between casts         |
| 10F-02 | 29-May   | 1726 | 20 23.489 | 107 54.347 | PPS on deck             |                                         |
| 10F-03 | 29-May   | 1810 | 20 39.655 | 107 51.567 | CTD deployed            | NH1410_10F_03                           |
| 10F-03 | 29-May   | 1822 | 20 39.781 | 107 51.584 | CTD @ 400m              |                                         |
| 10F-03 | 29-May   | 1844 | 20 39.830 | 107 51.556 | CTD on deck             |                                         |
| 10F-04 | 29-May   | 1950 | 20 40.321 | 107 51.742 | CTD deployed            | NH1410_10F_04                           |
| 10F-04 | 29-May   | 2002 | 20 40.500 | 107 51.769 | CTD @ 150m              |                                         |
| 10F-04 | 29-May   | 2025 | 20 41.063 | 107 51.743 | CTD on deck             |                                         |
| 10F-05 | 29-May   | 2300 | 20 40.198 | 107 49.448 | CTD deployed            | NH1410_10F_05                           |
|        |          | 2200 | 20 40 457 | 107 /0 /17 | CTD @ 150m              |                                         |

33

10F-05 29-May 2321 20 40.789 107 49.364 CTD on deck

| 11F-01 | 30-May | 0705 | 20 42.766 | 107 51.791 | CTD deployed | NH1410_11F_01                    |
|--------|--------|------|-----------|------------|--------------|----------------------------------|
| 11F-01 | 30-May | 0727 | 20 43.006 | 107 51.392 | CTD @ 200m   |                                  |
| 11F-01 | 30-May | 0751 | 20 43.240 | 107 50.982 | CTD on deck  |                                  |
| 11F-02 | 30-May | 0845 | 20 41.176 | 107 51.591 | CTD deployed | NH1410_11F_02                    |
| 11F-02 | 30-May | 0925 | 20 40.874 | 107 50.985 | CTD on deck  |                                  |
|        | 30-May | 1432 | 20 42.560 | 107 53.230 | CTD deployed | file missing                     |
|        | 30-May | 1503 | 20 43.273 | 107 53.035 | CTD @ 400m   |                                  |
|        | 30-May | 1544 | 20 43.969 | 107 52.815 | CTD on deck  |                                  |
| 11F-03 | 30-May | 1803 | 20 42.800 | 107 52.444 | CTD deployed | NH1410_11F-03                    |
| 11F-03 | 30-May | 1814 | 20 42.767 | 107 52.409 | CTD @ 150m   |                                  |
| 11F-03 | 30-May | 1830 | 20 42.733 | 107 52.314 | CTD on deck  |                                  |
| 11F-04 | 30-May | 2005 | 20 44.726 | 107 53.997 | CTD deployed | NH1410_11F-04                    |
| 11F-04 | 30-May | 2023 | 20 44.737 | 107 54.008 | CTD @ 400m   |                                  |
| 11F-04 | 30-May | 2052 | 20 44.730 | 107 53.930 | CTD on deck  |                                  |
| 11F-05 | 30-May | 2308 | 20 43.846 | 107 55.195 | CTD deployed | NH1410_11F-05                    |
| 11F-05 | 30-May | 2318 | 20 43.831 | 107 55.179 | CTD @ 120m   |                                  |
| 11F-05 | 30-May | 2331 | 20 43.881 | 107 55.115 | CTD on deck  |                                  |
| 12F-01 | 31-May | 0704 | 20 44.971 | 107 57.116 | CTD deployed | NH1410_12F-01                    |
| 12F-01 | 31-May | 0718 | 20 44.979 | 107 57.133 | CTD @ 200m   |                                  |
| 12F-01 | 31-May | 0743 | 20 45.097 | 107 57.085 | CTD on deck  |                                  |
| 12F-02 | 31-May | 0830 | 20 47.877 | 107 54.354 | CTD deployed | NH1410_12F-02                    |
| 12F-02 | 31-May | 0850 | 20 47.976 | 107 54.483 | CTD @ 400m   |                                  |
| 12F-02 | 31-May | 0928 | 20 48.102 | 107 54.295 | CTD on deck  |                                  |
| 125.02 | 24.84  | 4005 | 20.40.464 | 407 54 440 |              | NH14_PPS_16 and 17, *PPS did not |
| 12F-02 | 31-May | 1005 | 20 48.164 | 107 54.418 | PPS deployed | come out of water between casts  |
| 12F-02 | 31-May | 1656 | 20 50.670 | 107 55.326 | PPS on deck  |                                  |
| 12F-03 | 31-May | 1800 | 20 49.735 | 107 56.254 | CID deployed | NH1410_12F-03                    |
| 12F-03 | 31-May | 1809 | 20 49.821 | 107 56.200 | CTD @ 150m   |                                  |
| 12F-03 | 31-May | 1823 | 20 49.935 | 10/ 56.10/ | CID on deck  |                                  |
| 12F-04 | 31-May | 1957 | 20 49.029 | 107 55.441 | CID deployed | NH1410_12F-04                    |
| 12F-04 | 31-May | 2012 | 20 49.044 | 107 55.290 | CTD @ 400m   |                                  |
| 12F-04 | 31-May | 2046 | 20 49.412 | 107 55.056 | CTD on deck  |                                  |
| 12F-05 | 31-May | 2307 | 20 50.989 | 107 56.992 | CTD deployed | NH1410_12F-05                    |
| 12F-05 | 31-May | 2315 | 20 50.910 | 107 56.933 | CTD @ 120m   |                                  |
| 12F-05 | 31-May | 2327 | 20 50.867 | 107 56.848 | CTD on deck  |                                  |
| 13F-01 | 1-Jun  | 0700 | 20 52.963 | 107 58.268 | CTD deployed | NH1410_13F-01                    |
| 13F-01 | 1-Jun  | 0721 | 20 52.963 | 107 58.268 | CTD @ 200m   |                                  |
| 13F-01 | 1-Jun  | 0746 | 20 53.021 | 107 58.278 | CTD on deck  |                                  |
| 13F-02 | 1-Jun  | 0824 | 20 53.295 | 107 57.338 | CTD deployed | NH1410_13F-02                    |
| 13F-02 | 1-Jun  | 0841 | 20 53.311 | 107 57.461 | CTD @ 400m   |                                  |
| 13F-02 | 1-Jun  | 0919 | 20 53.350 | 107 57.742 | CTD on deck  |                                  |
| 13F-03 | 1-Jun  | 1020 | 20 53.570 | 107 58.254 | CTD deployed | NH1410_13F-03                    |
| 13F-03 | 1-Jun  | 1036 | 20 53.568 | 107 58.437 | CTD @ 400m   |                                  |

| 13F-03           | 1-Jun           | 1108 | 20 53.622 | 107 58.794 | CTD on deck             |                       |
|------------------|-----------------|------|-----------|------------|-------------------------|-----------------------|
| 13F-04           | 1-Jun           | 1223 | 20 53.337 | 107 58.165 | CTD deployed            | NH1410_13F-04         |
| 13F-04           | 1-Jun           | 1230 | 20 53.400 | 107 58.220 | CTD @ 150m              |                       |
| 13F-04           | 1-Jun           | 1246 | 20 53.470 | 107 58.467 | CTD on deck             |                       |
| 13F-05           | 1-Jun           | 1310 | 20 53.990 | 107 58.270 | CTD deployed            | NH1410_13F-05         |
| 13F-05           | 1-Jun           | 1337 | 20 53.902 | 107 58.492 | CTD @ 1200m             |                       |
| 13F-05           | 1-Jun           | 1416 | 20 54.068 | 107 58.820 | CTD on deck             |                       |
|                  | 1-Jun           | ~500 |           |            | APL Float #78 recovered | *not logged by bridge |
|                  | 1-Jun           | 1525 | 20 53.771 | 107 57.211 | CTD deployed            | file missing          |
|                  | 1-Jun           | 1533 | 20 53.799 | 107 57.211 | CTD @ 30m               |                       |
|                  | 1-Jun           | 1542 | 20 53.899 | 107 57.205 | CTD on deck             |                       |
|                  | 1-Jun           | 1805 | 20 54.294 | 107 54.649 | APL Float #77 recovered |                       |
| 13F-06           | 1-Jun           | 1814 | 20 54.122 | 107 54.767 | CTD deployed            | NH1410_13F_06         |
| 13F-06           | 1-Jun           | 1823 | 20 54.088 | 107 54.803 | CTD @ 150m              |                       |
| 13F-06           | 1-Jun           | 1839 | 20 54.045 | 107 54.930 | CTD on deck             |                       |
| 13F-07           | 1-Jun           | 2303 | 20 55.755 | 108 00.063 | CTD deployed            | NH1410_13F_07         |
| 13F-07           | 1-Jun           | 2312 | 20 55.698 | 108 00.112 | CTD @ 100m              |                       |
| 13F-07           | 1-Jun           | 2326 | 20 55.567 | 108 00.135 | CTD on deck             |                       |
| 13F-08           | 1-Jun           | 2340 | 20 55.420 | 108 00.135 | CTD deployed            | NH1410_13F_08         |
| 13F-08           | 1-Jun           | 2348 | 20 55.355 | 108 00.035 | CTD @ 120m              |                       |
| 13F-08           | 2-Jun           | 0007 | 20 55.277 | 107 59.901 | CTD on deck             |                       |
| 14F-01           | 2-Jun           | 0706 | 20 57.351 | 108 00.670 | CTD deployed            | NH1410_14F_01         |
| 14F-01           | 2-Jun           | 0715 | 20 57.299 | 108 00.767 | CTD @ 200m              |                       |
| 14F-01           | 2-Jun           | 0737 | 20 57.199 | 108 00.861 | CTD on deck             |                       |
| 14F-02           | 2-Jun           | 0815 | 20 57.707 | 108 00.490 | CTD deployed            | NH1410_14F_02         |
| 14F-02           | 2-Jun           | 0827 | 20 57.759 | 108 00.497 | CTD @ 400m              |                       |
| 14F-02           | 2-Jun           | 0904 | 20 57.946 | 108 00.554 | CTD on deck             |                       |
| 14F-03           | 2-Jun           | 1200 | 20 56.972 | 107 58.153 | CTD deployed            | NH1410_14F_03         |
| 14F-03           | 2-Jun           | 1208 | 20 56.979 | 107 58.102 | CTD @ 150m              |                       |
| 14F-03           | 2-Jun           | 1221 | 20 56.960 | 107 57.936 | CTD on deck             |                       |
| 14F-03           | 2-Jun           | 1234 | 20 56.894 | 107 58.071 | CTD deployed            | file missing          |
| 1/F-03           | 2-lun           | 1227 | 20 56 891 | 107 58 057 | CTD on deck (closed     |                       |
| 141-03           | 2-Jun<br>2-Jun  | 1220 | 20 50.891 | 107 58 01/ | CTD deployed            | NH1410 14E 04         |
| 14F-04           | 2-Jun           | 1233 | 20 50.857 | 107 58 012 |                         | NH1410_14F_04         |
| 141-04<br>14E-04 | 2-Jun<br>2-Jun  | 1245 | 20 56 750 | 107 58 062 | CTD on deck             |                       |
| 1/F-05           | 2-Jun           | 1245 | 20 50.750 | 107 58 260 | CTD deployed            | NH1410 14E 05         |
| 141-05<br>14E-05 | 2-Jun           | 1304 | 20 57.109 | 107 58 256 | CTD @ 1000m             | 1111410_141_05        |
| 141-05           | 2-Jun<br>2-Jun  | 1/12 | 20 50.997 | 107 58 1/2 | CTD on deck             |                       |
| 14F-05           | 2-Juli<br>2-lun | 1805 | 20 30.820 | 107 00.145 | CTD deployed            | NH1410 14E 06         |
| 1/1E-06          | 2-Jun           | 1816 | 21 00.092 | 108 00.321 |                         | 1111410_141_00        |
| 14F-00           | 2-Juli<br>2-Jun | 1010 | 21 00.114 | 100 00.547 |                         |                       |
| 146.07           | 2-Juli          | 1000 | 21 00.230 |            |                         |                       |
| 141-07           | z-jun           | 1908 | 20 59.792 | TO1 23.122 | CTD deployed            | NULTATO_TAF_07        |

| 14F-07    | 2-Jun  | 2000 20 59.893 | 107 59.892 | CTD @ 2600m          |                                  |
|-----------|--------|----------------|------------|----------------------|----------------------------------|
| 14F-07    | 2-Jun  | 2104 20 59.293 | 107 59.718 | CTD on deck          |                                  |
| 14F-08    | 2-Jun  | 2302 20 59.954 | 108 00.005 | CTD deployed         | NH1410_14F_08                    |
| 14F-08    | 2-Jun  | 2316 20 59.835 | 107 59.951 | CTD @ 300m           |                                  |
| 14F-08    | 2-Jun  | 2333 20 59.694 | 107 59.883 | CTD on deck          | *end of float drift survey       |
| 15F-01    | 3-Jun  | 0436 20 52.70  | 107 42.48  | CTD deployed         | NH1410_15F_01                    |
|           | 3-Jun  | ~0700          |            | ARGO float recovered | *not logged by bridge            |
| ES        | 4-Jun  | 0059 21 45.029 | 110 50.946 | CTD deployed         | NH1410_ES_01, *ES = eddy station |
| ES        | 4-Jun  | 0126 21 45.129 | 110 50.776 | CTD @ 1000m          |                                  |
| ES        | 4-Jun  | 0207 21 45.066 | 110 50.928 | CTD on deck          |                                  |
| BS1       | 6-Jun  | 0816 28 21.900 | 115 51.719 | CTD deployed         | NH1410_BS_01                     |
| BS1       | 6-Jun  | 0902 28 21.732 | 115 52.455 | CTD @ 2000m          |                                  |
| BS1       | 6-Jun  | 1008 28 21.730 | 115 53.444 | CTD on deck          |                                  |
| BS2       | 6-Jun  | 2304 29 50.417 | 116 30.989 | CTD deployed         | NH1410_BS_02                     |
| BS2       | 6-Jun  | 2335 29 50.000 | 116 31.260 | CTD @ 1500m          |                                  |
| BS2       | 6-Jun  | 0023 29 49.446 | 116 31.880 | CTD on deck          |                                  |
| San Diego | 10-May | 0800 32 42.35  | L17 14.16  | San Diego            |                                  |

\* local time; add 7 for UTC time

#### Appendix B - PPS operations (Ulloa lab)

May 15. 18:10 hrs PPS/CTD deployment (output rate 4 scans/sec). NH14\_PPS\_01.hex

#### Test of communication and deployment.

May 19. 18:10 hrs PPS/CTD deployment (output rate 4 scans/sec). NH14\_PPS\_02.hex

 Station
 6T

 Lat. 18° 54.135 N
 FINISH 18° 52.263 N

 Long. 104° 54.131 W
 FINISH 104° 51.844 W

 Time. 01:10 UTC
 FINISH

 Speed
 10 Hz

 Downcast time
 00:58:30

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig group). Depth 400 m.

| Depth     | Time (LCL) | Temperature | Salinity | Oxygen | Sampling    |
|-----------|------------|-------------|----------|--------|-------------|
| 5         | 02:51      | 29.79       | 34.117   | 194.2  | 1,2,4       |
| 20        | 02:30      | 29.78       | 34.118   | 195.1  | 1,2,3,4,7   |
| 50        | 02:10      | 24.58       | 34.256   | 111    | 1,2,3,4,7   |
| 60        | 01:49      | 19.97       | 34.502   | 21.2   | 1,2,3,4,5,7 |
| 68        | 01:10      | 18.02       | 34.625   | 2.5    | 1,2,4,5,7   |
| 80        | 00:30      | 16.31       | 34.720   |        | 1,2,3,4,5,7 |
| 110 (DCM) | 23:15      | 14.55       | 34.815   |        | 1,2,4,5,6,7 |
| 125       | 22:56      | 13.72       | 34.838   |        | 1,2         |
| 150       | 22:14      | 13.26       | 34.858   |        | 1,2         |
| 200       | 21:25      | 12.76       | 34.841   |        | 1,2         |
| 250       | 21:06      | 12.36       | 34.820   |        | 1,2         |
| 300       | 20:16      | 11.99       | 34.797   |        | 1,2         |
| 400       | 19:43      | 11.10       | 34.739   |        | 1,2         |

Note. High winds and undercurrent make hard to match the desired depth

1.- Montserrat (NH4); 2.- Marks's group (Nutrients, DG); 3.- Marks's group 2 (oxygen); 4.-Bo's group (N cycling and CH4 rates); 5.- Frank's group (DNA, ARN); 6.- Emilio (experiment); 7.- Martin's group (DIC, pH, Alkalinity).

May 20. 06:20 hrs PPS/CTD deployment (output rate 4 scans/sec). NH14\_PPS\_03.hex.

Station 6T

Lat. 18° 54.209 N FINISH 18° 54.685 N

Long. 104° 54.134 W FINISH 104° 54.061 W

#### Time INI 13:20 UTC Time FINISH 19:15 UTC (12:15 LCL)

Winch speed 10 Hz downcast 20 Hz upcast

Downcast Time 01:43:33

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig group). Depth 400 m.

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling   |
|-------|------------|-------------|----------|--------|------------|
| 400   | 8:42       |             |          |        |            |
| 200   | 9:15       |             |          |        |            |
| 125   | 10:01      |             |          |        |            |
| 85    | 10:43      |             |          |        | Emilio DCM |
| 50    | 11:23      |             |          |        |            |

21:40 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_04.hex

Station 7T

Lat. 18° 11.983 N FINISH 18° 13.977 N

Long. 104° 12.177 W FINISH 104° 12.603 W

Time. 04:40 UTC FINISH 14:55

Winch speed 10 Hz

Downcast Time 1:43:48

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig group). Depth 400 m.

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling   |
|-------|------------|-------------|----------|--------|------------|
| 400   | 00:02      | 10.26       | 34.693   | 1.46   |            |
| 250   | 01:18      | 12:16       | 34.805   | 1.46   |            |
| 175   | 01:54      | 12.84       | 34.843   | 1.50   |            |
| 150   | 02:31      | 13.21       | 34.853   | 1.45   |            |
| 140   | 03:05      | 13.40       | 34.855   | 1.48   |            |
| 125   | 03:39      | 13.64       | 34.856   | 1.44   |            |
| 100   | 04:15      | 14.30       | 34.833   | 1.45   |            |
| 89    | 04:50      | 15.59       | 34.760   | 1.6    | MA, Emilio |
| 52    | 06:10      | 21.50       | 34.442   | 58.1   |            |
| 37    | 06:44      | 26.80       | 34.241   | 194.3  |            |
| 5     | 07:22      | 30.2        | 34.028   | 194.4  |            |

MA: DNA, ARN, FCM, HPLC, CHLA, SCG, SEM. Experiment N° 4 of carbon fixation at DCM.

May 21. 20:00 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_05.hex

| Station             | 8T                        |       |
|---------------------|---------------------------|-------|
| Lat. 18° 11.935 N   | FINISH 18° 10.627 N       |       |
| Long. 104° 53.965 W | FINISH 104° 51.586 W      |       |
| Time. 03:00 UTC     | FINISH 10:50 UTC 03:50 LC | CL    |
| Winch speed         | 10 Hz                     |       |
| Downcast Time       | 1:45:00                   | 400 m |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling |
|-------|------------|-------------|----------|--------|----------|
| 400   | 22:34      | 9.92        | 34.676   | 1.56   | 02       |
| 170   | 00:07      | 12.61       | 34.831   | 1.51   |          |
| 155   | 00:42      | 12.78       | 34.839   | 1.54   |          |
| 140   | 01:16      | 12.97       | 34.842   | 1.53   |          |
| 125   | 01:50      | 13.55       | 34.849   | 1.48   |          |
| 45    | 02:39      | 21.33       | 34.467   | 24.7   | 02       |
| 5     | 03:19      | 30.17       | 34.090   | 190.4  | 02       |

May 21. 04:00 hrs PPS/CTD deployment (output rate2 scans/sec). NH14 PPS 06.hex

Station

Lat. 18° 10.231 N

8T FINISH 18° 10.766N

Long. 104° 51.379 W FINISH 104° 52.152 W

Time. 11:08 UTC 04:08 LCL downcast FINISH

Winch speed 15 Hz (~3-4 m/min)

Downcast Time

00:24:30 150 m

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling   |
|-------|------------|-------------|----------|--------|------------|
| 90    | 05:20      |             |          |        | Glucose    |
|       |            |             |          |        | intake     |
| 74    | 06:00      |             |          |        | N2O        |
|       |            |             |          |        | production |
|       |            |             |          |        | Exp.       |

2 Bottles were broken.

May 22. 23:29 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_07.hex

Station

9T

| Lat. 18° 12.013 N         | FINISH 18° 13.123 N  |             |
|---------------------------|----------------------|-------------|
| Long. 105° 11.977 W       | FINISH 105° 13.030 W |             |
| Time. 23:10 LCL 06:10 UTC | C FINISH 13:55 UT    | C 06:55 LCL |
| Downcast ini 23:29 hrs    | Upcast end 06:46     |             |
| Winch speed               | 10 Hz                |             |
| Downcast Time             | 1:43:43              | 400 m       |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling                 |
|-------|------------|-------------|----------|--------|--------------------------|
| 400   | 01:12      | 9.78        | 34.656   | 1.61   | NH4 <sup>+</sup>         |
| 250   | 02:25      | 11.69       | 34.774   | 1.56   | NH4 <sup>+</sup>         |
| 150   | 03:16      | 12.93       | 34.843   | 1.50   | NH4 <sup>+</sup>         |
| 140   | 03:39      | 12.99       | 34.844   | 1.49   | NH4 <sup>+</sup>         |
| 125   | 04:03      | 13.32       | 34.862   | 1.51   | NH4 <sup>+</sup> DCM EXP |
| 90    | 04:33      | 14.49       | 34.798   | 1.58   | NH4 <sup>+</sup>         |
| 40    | 05:51      | 24.69       | 34.463   | 164    | NH4 <sup>+</sup> SCM-CCS |
| 10    | 06:27      | 30.23       | 34.111   | 191    | NH4 <sup>+</sup>         |

May 24. 01:10 hrs PPS/CTD deployment (output rate2 scans/sec). NH14 PPS 08.hex

Note. Cast delayed in 1 hour due CTD misconnection. Problem solved.

| Station                  | 10 T                 |       |
|--------------------------|----------------------|-------|
| Lat. 18° 12.316 N        | FINISH 18° 12.226 N  |       |
| Long. 106° 17.897 W      | FINISH 106° 17.677 W |       |
| Time. 08:10 LCL 01:10 UT | C FINISH UTC LCL     |       |
| Downcast ini 01:31 hrs   | Upcast end           |       |
| Winch speed              | 10 Hz                |       |
| Downcast Time            | 1:43:39              | 400 m |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling          |
|-------|------------|-------------|----------|--------|-------------------|
| 400   | 03:14      | 9.26        | 34.613   | 1.7    | $\mathrm{NH_4}^+$ |
| 250   | 04:16      | 11.4        | 34.752   | 1.57   | NH4 <sup>+</sup>  |
| 150   | 05:01      | 12.65       | 34.802   | 1.51   | $\mathrm{NH_4}^+$ |

| 110 | 05:36 | -     | -      | 1.42 | NH4 <sup>+</sup> , EXP |
|-----|-------|-------|--------|------|------------------------|
|     |       |       |        |      | DCM                    |
| 140 | 06:21 | 13.07 | 34.850 | 1.48 | $\mathrm{NH_4}^+$      |
| 90  | 06:58 | 15.79 | 34.697 | 1.6  | $\mathrm{NH_4}^+$      |
| 50  | 07:28 | 22.12 | 34.531 |      | $\mathrm{NH_4}^+$      |
| 10  | 07:58 | 28.39 | 34.620 |      | $\mathrm{NH_4}^+$      |

08:32 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_09.hex

Lat. 18° 12.226 Long.106° 17.677.

May 25. 06:44 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_10.hex

 Station
 11 T

 Lat. 18° 12.015 N
 FINISH 18° -- N

 Long. 107° 29.988 W
 FINISH 104° --W

 Time. 06:44 LCL 13:44 UTC
 FINISH 20:04 UTC 13:04 LCL

 Downcast ini 07:03 hrs
 Upcast end

 Winch speed
 10 Hz

 Downcast Time
 1:42:43
 400 m

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling |
|-------|------------|-------------|----------|--------|----------|
| 400   | 08:45      | 9.45        | 34.622   | 1.81   | -        |
| 250   | 10:03      | -           | -        | 1.79   | -        |
| 130   | 10:55      | -           | -        | 1.7    | -        |
| 100   | 11:23      | 15.01       | 34.538   | 23.9   | -        |
| 75    | 11:51      | 18.61       | 34.480   | 64.9   | -        |
| 50    | 12:17      | 22.38       | 34.460   | 198.2  | -        |
| 10    | 12:47      | 27.54       | 34.521   |        | -        |

Note: No DCM developed

May 26. 08:00 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_11.hex

| Station                   | 2 T                          |
|---------------------------|------------------------------|
| Lat. 18° 54.000 N         | FINISH 18° 53.066 N          |
| Long. 108° 48.030 W       | FINISH 108° 48.978 W         |
| Time. 08:00 LCL 15:00 UTC | C FINISH 21:00 UTC 14:00 LCL |

| Downcast ini 8:26 hrs | Upcast end |       |
|-----------------------|------------|-------|
| Winch speed           | 10 Hz      |       |
| Downcast Time         | 1:43:12    | 400 m |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling       |
|-------|------------|-------------|----------|--------|----------------|
| 400   | 10:09      | 9.27        | 34.625   | 1.87   |                |
| 150   | 11:46      | -           | -        | 1.7    |                |
| 125   | 12:13      | 13.14       | 34.740   | 2.49   |                |
| 100   | 12:43      | 13.98       | 34.660   | 15.2   | O <sub>2</sub> |
| 50    | 13:15      | 17.81       | 34.434   | 110    | O <sub>2</sub> |
| 10    | 13:45      | 26.6        | 34.889   | 200.6  | O <sub>2</sub> |

Note: No DCM developed. Craig's system was not connected to the PPS flow in the way down.

May 27. 06:20 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_12.hex

| Station                  | 3 T                  |       |
|--------------------------|----------------------|-------|
| Lat. 18° 54.079 N        | FINISH 18° N         |       |
| Long. 107° 29.751 W      | FINISH 104° W        |       |
| Time. xx:00 LCL 15:00 UT | C FINISH UTC LCL     |       |
| Downcast ini 06:42 hrs   | Upcast end 13:15 LCL |       |
| Winch speed              | 10 Hz                |       |
| Downcast Time            | 1:46:16              | 400 m |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling       |
|-------|------------|-------------|----------|--------|----------------|
| 400   | 08:26      | 8.98        | 34.590   | 1.67   |                |
| 150   | 10:07      | 12.91       | 34.792   | 1.62   |                |
| 112   | 10.37      | 13.89       | 34.766   | 1.65   | O <sub>2</sub> |
| 100   | 11:20      | 14.35       | 34.742   | 2.38   | O <sub>2</sub> |
| 50    | 12:05      | 23.10       | 34.504   | 215.3  | O <sub>2</sub> |
| 10    | 12:45      | 28.01       | 34.677   | 194.8  | O <sub>2</sub> |

Note: Small DCM.

May 28. 12:05 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_13.hex

Station

Lat. 20° 26.664 N FINISH 20° 28.796 N

F 9

| Long. 107° 37.773 W    | FINISH 107° 40.656 W |       |  |  |  |
|------------------------|----------------------|-------|--|--|--|
| Time. 19:05 UTC        | FINISH 02:10 UTC     |       |  |  |  |
| Downcast ini 12:19 hrs | Upcast end LCL       | 19:10 |  |  |  |
| Winch speed            | 10 Hz                |       |  |  |  |
| Downcast Time          | 1:44:36              | 400 m |  |  |  |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling       |
|-------|------------|-------------|----------|--------|----------------|
| 400   | 14:03      | 9.61        | 34.648   | 1.67   |                |
| 150   | 15:41      | 12.44       | 34.798   | 1.64   |                |
| 130   | 16:06      | 13.02       | 34.820   | 1.69   |                |
| 125   | 16:33      | 13.10       | 34.816   | 1.57   |                |
| 120   | 16:48      | 13.18       | 34.803   | 1.60   |                |
| 100   | 17:07      | 14.07       | 34.760   | 1.56   |                |
| 82    | 17:40      | 15.45       | 34.723   | 1.49   |                |
| 45    | 18:22      | 21.53       | 34.520   | 102    | O <sub>2</sub> |
| 10    | 18:51      | 29.39       | 34.519   | 193    | O <sub>2</sub> |

May 29. 10:10 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_14.hex

| Station                | F10                        |
|------------------------|----------------------------|
| Lat. 20° 37.391 N      | FINISH 20° 37.935 N        |
| Long. 107° 51.284 W    | FINISH 107° 52.260 W       |
| Time. 17:10 UTC        | FINISH 20:20 UTC 13:20 LCL |
| Downcast ini 10:30 hrs | Upcast end 13:16 LCL       |
| Winch speed            | 10 Hz                      |

Downcast Time

00:35:46

150 m

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling       |
|-------|------------|-------------|----------|--------|----------------|
| 150   | 11:05      | 12.78       | 34.806   | 1.57   | Во             |
| 95    | 12:03      | 14.59       | 34.763   | 1.58   | Frank          |
| 75    | 12:19      | 16.00       | 34.691   | 2.5    | O <sub>2</sub> |
| 48    | 12:36      | 21.91       | 33.793   | 8.2    | O <sub>2</sub> |
| 10    | 13:02      | 28.92       | 34.249   | 45     | O <sub>2</sub> |

Bo: N<sub>2</sub>O Production Experiment. Oxygen sensor report low concentration values. Probable clogging.

12:05 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_15.hex

| Station                | F10                            |  |  |  |
|------------------------|--------------------------------|--|--|--|
| Lat. 20° 37.936 N      | FINISH 20° 40.353 N            |  |  |  |
| Long. 107° 52.277 W    | FINISH 107° 54.890 W           |  |  |  |
| Time. 19:05 UTC        | FINISH 00:35 UTC 17:35 LCL     |  |  |  |
| Downcast ini 13:30 hrs | Upcast end 17:35 LCL 00:35 UTC |  |  |  |
| Winch speed            | 10 Hz upcast to 20 Hz          |  |  |  |
| Downcast Time          | 1:44:30 400 m                  |  |  |  |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling |
|-------|------------|-------------|----------|--------|----------|
| 400   | 15:14      | -           | -        | 85     |          |
| 125   | 16:02      | 13.08       | 34.670   | 10     |          |
| 50    | 16:42      | 20.33       | 33.868   | 11     | Нарру    |

Notes. SBE43 and Stox don't work

<u>May 30</u>. The wind and high waves make very hard to deploy the PPS. We work on processing data and filling out the sampling log sheet.

May 31. 10:10 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_16.hex

| Station             | F12                      |
|---------------------|--------------------------|
| Lat. 20° 48.183 N   | FINISH 20° 48.944 N      |
| Long. 107° 54.436 W | FINISH 107° 55.044 W     |
| Time. 17:10 UTC     | FINISH 13:15 LCL surface |
| Downcast ini        | 10:22 hrs                |
| Winch speed         | 10 Hz                    |
|                     |                          |

| Downcast Time | 00:38:30 | 160 m |
|---------------|----------|-------|

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling       |
|-------|------------|-------------|----------|--------|----------------|
| 160   | 11:00      |             |          |        | Во             |
| 85    | 11:25      |             |          | 1.40   | DCM Exp        |
| 70    | 12:10      |             |          | 4.01   | O <sub>2</sub> |
| 40    | 12:48      |             |          | 161    | O <sub>2</sub> |

Note. SBE43 was maintained and works fine.

May 31. 13:26 hrs PPS/CTD deployment (output rate2 scans/sec). NH14\_PPS\_17.hex

| Station             | F12                  |       |
|---------------------|----------------------|-------|
| Lat. 20° 49.015 N   | FINISH 20° 48.944 N  |       |
| Long. 107° 55.060 W | FINISH 107° 55.044 W |       |
| Time. 20:26 UTC     | FINISH               |       |
| Downcast ini        | 13:26 hrs            |       |
| Winch speed         | 10 Hz                |       |
| Downcast Time       | 01:44:00             | 400 m |

Continuous Profile for Nitrite and dissolved gas (Mark's group), DIC (Martin's group) and Nitrate, oxygen (optode, SBE43), pCO2 (Craig's group).

| Depth | Time (LCL) | Temperature | Salinity | Oxygen | Sampling |
|-------|------------|-------------|----------|--------|----------|
| 400   | 15:10      |             |          | 1.7    |          |
| 350   | 15:48      |             |          | 1.71   |          |
|       |            |             |          |        |          |
|       |            |             |          |        |          |

Note. BIG FAIL. Winch wire was stuck in the block and the wire was ripped. Pump also was damaged and need to be discarded. Way up to 35 HZ.