U.S. GEOTRACES EPZT

R/V Thomas G. Thompson (TGT303) 25 October 2013 - 20 December 2013 Manta, Ecuador - Papeete, Tahiti, French Polynesia

> Chief Scientist: Dr. James Moffett University of Southern California

Co-Chief Scientist: Dr. Christopher German Woods Hole Oceanographic Institution

Co-Chief Scientist: Dr. Gregory Cutter Old Dominion University

STS Cruise Report 15 August 2014

Principal Programs of U.S. GEOTRACES EPZT

GT-C (ODU/12L GoFic	o) CTDO/Ros	ette + Super-GeoF Depa	rt-Station Samples
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email
CTD/Rosette Data NanoMolar Nutrients As Sb Se I †TDS	ODU	Gregory Cutter	gcutter@odu.edu
‡Salinity ‡Nutrients	SIO	James H. Swift	jswift@ucsd.edu
Hg (Total Hg only for Super-GeoF)	WSU WHOI	Chad Hammerschmidt Carl Lamborg	chad.hammerschmidt@wright.edu clamborg@whoi.edu
‡AI ‡Mn †Fe	NOAA	Joseph Resing	Joseph.Resing@noaa.gov
Co Speciation	WHOI	Mak Saito	msaito@whoi.edu
Cu Speciation	SIO	Katherine Barbeau	kbarbeau@ucsd.edu
Fe Speciation	BIOS	Kristen Buck	kristen.buck@bios.edu
Fe	ODU	Peter Sedwick	psedwick@odu.edu
Fe(II) Total Fe, Zn, Cu, Mn	USC	James Moffett	jmoffett@usc.edu
‡Ga Ba V Mo	USM	Alan Shiller	alan.shiller@usm.edu
‡Po ‡Pb (shallow)	UCSC	Russ Flegal	flegal@ucsc.edu
Po Pb (mid/deep)	MIT	Ed Boyle	eaboyle@mit.edu
‡Dissolved Trace Metals: AI Cd Co Cu Ga Fe Pb Mn Ni Sc Ag Ti Zn La Y (filtered and unfiltered for Super-GeoF and mid-GeoF)	UCSC	Ken W. Bruland	bruland@ucsc.edu
Particulate/Cellular Trace Metals: Al P Mn Fe Co Ni Cu Zn Cd †Element Analysis of Phytoplankton	BLOS	Benjamin Twining	btwining@bigelow.org
†Particulate/Labile Trace Metals: Be Mg Al P Ca Ti V Cr Mn Fe Co Ni Cu Zn As Rb Sr Y Zr Mo Ag Cd Sn Sb Ba REE Pb ²³² Th U	RUTG WHOI	Robert Sherrell Chris German	sherrell@marine.rutgers.edu cgerman@whoi.edu
Dissolved Trace Metals: Fe Cu Zn Cd Mn Fe Colloids	RSMAS	Jingfeng Wu	jwu@rsmas.miami.edu
d ⁵⁶ Fe d ⁶⁶ Zn d ¹¹⁴ Cd [Fe] [Zn] [Cd]	SC	Seth John	sjohn@geol.sc.edu

* Affiliation abbreviations are listed on page 7

† Only these samples were not collected by the Surface Fish

‡ These samples were also collected at the mid-GeoF sampling. Bruland and Resing dissolved samples were collected every 2 hours between stations along the track. Unfiltered Bruland samples were collected at every 2-hour position only until station 7; then only at mid-GeoF and super-GeoF positions.

30-ODF (ODF/30L Niskin) CTD/Rosette (Corer samples in a separate table)					
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email		
CTD/Rosette Data diss.O ₂ Nutrients Salinity On-Board Data Website Data Management	SIO	James H. Swift	jswift@ucsd.edu		
CFCs SF ₆	RSMAS	Rana Fine	rfine@rsmas.miami.edu		
diss. He Ne Ar Kr Xe ³ He/ ⁴ He ³ H ¹³ C	WHOI / NOSAMS	William Jenkins	wjenkins@whoi.edu		
$N_2/Ar d^{15}N-N_2$	UMassD	Mark Altabet	maltabet@umassd.edu		
$ \begin{array}{c} d^{15}N\text{-}N_2O \ d^{18}O\text{-}N_2O \ [N_2O] \\ d^{15}N\text{-}NO_2 \ d^{18}O\text{-}NO_2 \ [NO_2^-] \\ d^{15}N\text{-}NO_3 \ d^{18}O\text{-}NO_3 \end{array} $	STANF	Karen L. Casciotti	kcasciot@stanford.edu		
DIC Total Alkalinity	BIOS	Nick Bates	nick.bates@bios.edu		
‡DOC	UCSB	Craig Carlson	carlson@lifesci.ucsb.edu		
¹⁴ C	UW	Paul Quay	pdquay@u.washington.edu		
‡Thiols	WHOI WSU	Carl Lamborg Chad Hammerschmidt	clamborg@whoi.edu chad.hammerschmidt@wright.edu		
HPLC Pigments	UH	Robert R. Bidigare	bidigare@hawaii.edu		
²³⁴ Th	WHOI	Ken Buesseler	kbuesseler@whoi.edu		
²²⁶ Ra	WHOI SC	Matthew Charette Willard S. Moore	mcharette@whoi.edu moore@geol.sc.edu		
Fe(II)	USC	James Moffett	jmoffett@usc.edu		
Unfiltered AI Mn Fe	NOAA	Joseph Resing	Joseph.Resing@noaa.gov		
Si Isotopes diss. SiO ₂	UCSB	Mark A. Brzezinski	mark.brzezinski@lifesci.ucsb.edu		
‡ ²³⁰ Th ‡ ²³² Th ‡ ²³² Th Colloids ‡ ²³¹ Pa ‡ ²³¹ Pa Colloids	LDEO LDEO UMN UMN	Robert F. Anderson Marty Fleisher Larry Edwards Hai Cheng	boba@ldeo.columbia,edu martyq@ldeo.columbia.edu edwar001@umn.edu cheng021@umn.edu		
‡Nd ‡REE	LDEO LDEO USC	Leo Pena Steven Goldstein Doug Hammond	leopoldo@ldeo.columbia.edu steveg@ldeo.columbia.edu dhammond@usc.edu		
‡ ²¹⁰ Po ‡ ²¹⁰ Pb	WSU QCCUNY	Mark Baskaran Gillian Stewart	Baskaran@wayne.edu gillian.stewart@qc.cuny.edu		
‡ ²³⁹ Pu,‡ ²⁴⁰ Pu ‡ ²³⁷ Np ‡ ¹³⁷ Cs ‡ ¹³⁴ Cs	LDEO	Timothy Kenna	tkenna@ldeo.columbia.edu		
\pm ⁹⁰ Sr \pm ¹²⁹ I \pm ²³⁶ U \pm ²³⁸ U	LDEO UAB	Timothy Kenna Pere Masqué	tkenna@ldeo.columbia.edu Pere.Masque@uab.cat		

* Affiliation abbreviations are listed on page 7
 ‡ These samples were also collected with Super-GeoF surface fish

30-ODF Rosette Corer samples							
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email				
NIOZ Mono-Corer only:							
²³² Th ²³⁰ Th ²³¹ Pa ²³⁴ U ²³⁸ U	LDEO	Leo Pena	leopoldo@ldeo.columbia.edu				
Nd Isotopes	LDEO	Steven Goldstein	steveg@ldeo.columbia.edu				
top layer of NIOZ Mono-Corer, and Wax	Corer:						
Particulate / Labile Trace Metals:							
Be Mg Al P Ca Ti V Cr Mn Fe	RUTG	Robert Sherrell	sherrell@marine.rutgers.edu				
Co Ni Cu Zn As Rb Sr Y Zr Mo	WHOI	Chris German	cgerman@whoi.edu				
Ag Cd Sn Sb Ba REE Pb ²³² Th U							
Wax Corer only:							
	UMN	Brandy Toner	toner@umn.edu				
parameters TBA	RUTG	Robert Sherrell	sherrell@marine.rutgers.edu				
	WHOI	Chris German	cgerman@whoi.edu				

* Affiliation abbreviations are listed on page 7

Aerosols (3 systems) and/or Rainwater						
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email			
Aerosol and Rainwater:						
Li Na Mg Al P Sc Ti V Cr	UAF	Ana M. Aguilar-Islas	amaguilarislas@alaska.edu			
Mn Fe Co Ni Cu Zn Ga As	SkIO	Clifton Buck	clifton.buck@skio.uga.edu			
Se Rb Sr Zr Cd Sn Sb Cs	FSU	William Landing	wlanding@fsu.edu			
Ba La Ce Nd Pb Th U						
Aerosol Cu Ligands	SIO	Katherine Barbeau	kbarbeau@ucsd.edu			
Aerosol Fe Ligands	BIOS	Kristen Buck	kristen.buck@bios.edu			
Aerosol [Fe] [Zn] [Cd] d ⁵⁶ Fe d ⁶⁶ Zn d ¹¹⁴ Cd	SC	Seth John	sjohn@geol.sc.edu			
Acresci 210pc 210ph	WSU	Mark Baskaran	Baskaran@wayne.edu			
Aerosol PO PD	QCCUNY	Gillian Stewart	gillian.stewart@qc.cuny.edu			
Aerosol and Rainwater: ⁷ Be	RSMAS	David Kadko	dkadko@rsmas.miami.edu			
Aerosol and Rainwater:	MIT	Ed Boyle	eaboyle@mit.edu			
Po Pb stable Isotopes	UCSC	Russ Flegal	flegal@ucsc.edu			
Aaraadu ²³² Th	LDEO	Robert F. Anderson	boba@ldeo.columbia,edu			
Aerosol. III	LDEO	Marty Fleisher	martyq@ldeo.columbia.edu			
Aerosol: Nd Isotopes REE	LDEO	Leo Pena	leopoldo@ldeo.columbia.edu			
Aerosol and Rainwater: N Isotopes d 15 N-NO ₃ d 18 O-NO ₃ D 17 O-NO ₃ [NO ₃ ⁻]	Brown	Meredith Hastings	meredith_hastings@brown.edu			
Aerosol: DOM (Dissolved Organic Matter)	ODU	Andrew Wozniak	awozniak@odu.edu			
Aerosol and Rainwater:	WHOI	Carl Lamborg	clamborg@whoi.edu			
Total Hg only	WSU	Chad Hammerschmidt	chad.hammerschmidt@wright.edu			

McL-Prof (McLane Pump) Profiles (in situ pump filters or piggyback 30L Niskins)				
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email	
SBE19plus (SeaCAT) CTD Data	WHOI	Phoebe J. Lam	pjlam@whoi.edu	
Niskin Bottles				
²³⁴ Th	WHOI	Ken Buesseler	kbuesseler@whoi.edu	
²²⁶ Ra	WHOI SC	Matthew Charette Willard S. Moore	mcharette@whoi.edu moore@geol.sc.edu	
Organic and Inorganic Hg Thiols	WSU	Chad Hammerschmidt	chad.hammerschmidt@ wright.edu	
	WHOI	Carl Lamborg	clamborg@whoi.edu	
Nutrients Salinity	SIO	James H. Swift	jswift@ucsd.edu	
<i>In situ</i> pump MnO ₂ -coated cartridges				
Dissolved Radium Isotopes	WHOI SC	Matthew Charette Willard S. Moore	mcharette@whoi.edu moore@geol.sc.edu	
Dissolved ²²⁷ Ac	USC	Doug Hammond	dhammond@usc.edu	
Dissolved ²²⁸ Th	WHOI WHOI SC	Ken Buesseler Matthew Charette Willard S. Moore	kbuesseler@whoi.edu mcharette@whoi.edu moore@geol.sc.edu	
In situ pump filters: QMA side				
d ¹⁵ N-PN	STANF	Karen L. Casciotti	kcasciot@stanford.edu	
Particulate Organic and Inorganic Hg Thiols	WSU	Chad Hammerschmidt	chad.hammerschmidt@ wright.edu	
	WHOI	Carl Lamborg	clamborg@wnol.edu	
Particulate ²³⁴ Th and ²²⁸ Th	WHOI WHOI SC	Ken Buesseler Matthew Charette Willard S. Moore	kbuesseler@whoi.edu mcharette@whoi.edu moore@geol.sc.edu	
Particulate Organic and Inorganic Carbon	WHOI	Phoebe J. Lam	pjlam@whoi.edu	
Proteins	WHOI	Mak Saito	mak@whoi.edu	
Particulate ²¹⁰ Po ²¹⁰ Pb (Super Stations Only)	WSU QCCUNY	Mark Baskaran Gillian Stewart	Baskaran@wayne.edu Gillian.Stewart@qc.cuny.edu	
Particulate Anthropogenic Radionuclides: ²³⁹ Pu, ²⁴⁰ Pu ²³⁷ Np ¹³⁷ Cs ¹³⁴ Cs ⁹⁰ Sr (Super Stations Only)	LDEO UAB	Timothy Kenna Pere Masqué	tkenna@ldeo.columbia.edu Pere.Masque@uab.cat	
⁷ Be (4 stations only, 3 depths in upper 200m)	RSMAS	David Kadko	dkadko@rsmas.miami.edu	
McL-Prof table continued on next page				

McL-Prof (McLane Pump) Profiles (in situ pump filters or piggyback 30L Niskins) - cont'd					
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email		
In situ pump filters: Supor side (142mm	paired 0.8µm	Supor filters and $51 \mu m$	n polyester prefilter)		
Particulate ²³² Th ²³⁰ Th ²³¹ Pa	LDEO LDEO UMN UMN	Robert F. Anderson Marty Fleisher Larry Edwards Hai Cheng	boba@ldeo.columbia,edu martyq@ldeo.columbia.edu edwar001@umn.edu cheng021@umn.edu		
Particulate/Cellular Trace Metals: Al P Mn Fe Co Ni Cu Zn Cd	BLOS	Benjamin Twining	btwining@bigelow.org		
Particulate Trace Metals and Major Particle Composition: Fe Al Mn Cd Cu Co Ti Ba P POC CaCO ₃ bSi (biogenic Silica) Lithogenic Particles Fe oxyhydroxides Mn oxyhydroxides Suspended Particulate Mass	WHOI	Phoebe J. Lam	pjlam@whoi.edu		
Particulate ²¹⁰ Po ²¹⁰ Pb	WSU QCCUNY	Mark Baskaran Gillian Stewart	Baskaran@wayne.edu gillian.stewart@qc.cuny.edu		
Particulate AVS Elemental Se	ODU	Gregory Cutter	gcutter@odu.edu		
Particulate Nd Isotopes and REE	LDEO LDEO USC	Leo Pena Steven Goldstein Doug Hammond	leopoldo@ldeo.columbia.edu steveg@ldeo.columbia.edu dhammond@usc.edu		
Particulate Fe Speciation (XANES)	UMN WHOI	Brandy Toner Phoebe J. Lam	toner@umn.edu pjlam@whoi.edu		
Particulate Fe Isotopes	SC	Seth John	sjohn@geol.sc.edu		

Other Sampling					
Program / Parameters Measured	Affiliation*	Princ. Investigator	Email		
Beryllium Pump Profiles: Total Dissolved ⁷ Be	RSMAS	David Kadko	dkadko@rsmas.miami.edu		
Towed Surface Fish, Filtered and Unfiltered: AI Cd Co Cu Ga Fe Pb Mn Ni Sc Ag Ti Zn La Y (extra sampling between stations and mid-GeoF samples)	UCSC	Ken W. Bruland	bruland@ucsc.edu		
Towed Surface Fish Only, Trace Metals: Li Na Mg Al P Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga As Se Rb Sr Zr Cd Sn Sb Cs Ba La Ce Nd Pb Th U (Super-GeoF and mid-GeoF only)	UAF	Ana M. Aguilar-Islas	amaguilarislas@alaska.edu		
Co storage test (stas 8/1 and 34/5 only)	WHOI UCSC	Nick Hawco Claire Parker	nickhawco@gmail.com ceparker@ucsc.edu		
Ship's Underway Sensors	UW	Thompson SSSG Technicians	sssg@thompson.washington.edu		

Shipboard Personnel on U.S. GEOTRACES EPZT

Name	Affiliation	Shipboard Duties	Shore Email
James Moffett	USC	Chief Scientist Fe(II) Analysis	jmoffett@usc.edu
Christopher German	WHOI	Co-Chief Scientist ODF Console Ops	cgerman@whoi.edu
Gregory Cutter	ODU	Co-Chief Scientist GoFlo Winch Ops	gcutter@odu.edu
Patrick A'Hearn Susan Becker Erin Black Katlin Bowman Clifton Buck Marty Fleisher	UW/SSSG SIO/STS WHOI WSU SkIO LDEO	Thompson Science Support Nutrients / Deck Th / Ra Sampling Organic Hg Aerosol / Fish Sampling 30-ODF Supertech	pahearn@uw.edu sbecker@ucsd.edu eblack@whoi.edu bowman.49@wright.edu cliftonsbuck@gmail.com martyq@ldeo.columbia.edu
Carlos Alberto Martinez Gamboa	IMARPE	Pigments / Observer	cmartinez@imarpe.gob.pe
Jim Happell Nick Hawco Stephen Jalickee	RSMAS WHOI UW/SSSG	CFCs / DIC Sampling Co Analysis Thompson Science Support	jhappell@rsmas.miami.edu nickhawco@gmail.com jalickee@uw.edu
Mary Carol Johnson	SIO/STS	Data Manager ODF Data Processing	mcj@ucsd.edu
Brett Longworth Melissa T. Miller Sarah Nicholas Maria Nielsdottir	WHOI SIO/STS UMN ODU	3He / 3H / DIC / 13C Sampling Oxygen / Deck McLane Pumps Iodide / Iodate / As	blongworth@whoi.edu melissa-miller@ucsd.edu nich0160@umn.edu maria.nielsdottir@gmail.com
Daniel Ohnemus	WHOI	McLane Pumps SeaCAT CTD Data	dohnemus@gmail.com
Robert Palomares III Claire Parker Leopoldo Pena Brian Peters Steven Pike	SIO/STS UCSC LDEO STANF WHOI	ET / Salinity / Deck GoFlo Sampling 30-ODF Supertech N and O isotopes McLane Pumps	rpalomares@ucsd.edu ceparker@ucsc.edu leopoldo@ldeo.columbia.edu bpeters1@stanford.edu spike@whoi.edu
Sara Rauschenberg	BLOS	Phytoplankton Elements Particulate TM	srauschenberg@bigelow.org
Joseph Resing Laura Richards Saeed Roshan Gugu Rutherford Virginie Sanial Rob Sherrell Geoffrey J. Smith	UW ODU RSMAS ODU WHOI RUTG UCSC	Al / Mn / Fe GoFlo Sampling Colloids Nanonutrients / As McLane Pumps / Ra GoFlo Sampling Underway Towed Fish	Joseph.Resing@noaa.gov lcrichar@odu.edu sroshan@rsmas.miami.edu grutherf@odu.edu virginie.sanial@legos.obs-mip.fr sherrell@marine.rutgers.edu geosmit@ucsc.edu
Bettina Sohst Mark Stephens Gretchen Swarr Cheryl Zurbrick	ODU RSMAS WHOI UCSC	Fe Analysis Be-7 Inorganic Hg GoFlo Sampling	bsohst@odu.edu mstephens@rsmas.miami.edu gswarr@whoi.edu czurbric@ucsc.edu

	KEY to Affiliation Abbreviations
BIOS	Bermuda Institute of Ocean Sciences
BLOS	Bigelow Laboratory for Ocean Sciences
Brown	Brown University
FSU	Florida State University
IMARPE	Instituto del Mar del Perú
LDEO	Lamont-Doherty Earth Observatory
MIT	Massachusetts Institute of Technology
NOAA	National Oceanic and Atmospheric Administration
NOSAMS	National Ocean Science AMS Facility (WHOI)
ODU	Old Dominion University
QCCUNY	Queens College, The City University of New York
RSMAS	Rosenstiel School of Marine and Atmospheric Science (University of Miami)
RUTG	Rutgers University
SC	University of South Carolina
SIO	Scripps Institution of Oceanography (UCSD)
SkIO	Skidaway Institute of Oceanography (Univ. of GA)
SSSG	Shipboard Scientific Services Group (UW)
STS	Shipboard Technical Support (UCSD/SIO)
ODF	Oceanographic Data Facility (sub-group of STS)
STANF	Stanford University
UAB	Universitat Autònoma de Barcelona
UAF	University of Alaska, Fairbanks
UCSB	University of California, Santa Barbara
UCSC	University of California, Santa Cruz
UCSD	University of California, San Diego
UH	University of Hawaii
UMassD	University of Massachusetts, Dartmouth
UMN	University of Minnesota
USC	University of Southern California
USM	University of Southern Mississippi
UW	University of Washington
WHOI	Woods Hole Oceanographic Institution
WSU	Wayne State University

Summary

The U.S. GEOTRACES East Pacific Zonal Transect (EPZT) was occupied from 25 October 2013 - 20 December 2013 aboard R/V Thomas G. Thompson for a survey consisting of rosette/CTD casts, McLane *in situ* pump and ⁷Be pump casts, and a variety of underway measurements. The ship departed Manta, Ecuador on 25 October 2013 and arrived in Papeete, Tahiti on 20 December 2013 (UTC dates).

A sea-going science team gathered from 15 oceanographic institutions participated on the cruise. The programs and PIs, and the shipboard science team and their responsibilities, are listed in the "Principal Programs" and "Shipboard Personnel" sections above.

Two types of rosette/SBE9*plus* CTD casts (ODF/30L-Niskin and GT-C/12L-GoFlo) were made at 36 station locations during U.S. GEOTRACES EPZT. Deep ODF/30L-Niskin casts included a device suspended 20 meters below the rosette, designed either to take a core sample or pick up particulates from the sea floor. Shallow and deep McLane pump profiles were done at all Full stations, with an additional mid-water profile at Super Stations. An SBE19*plus* CTD was attached to the end of the McLane wire on all but seven deep pump casts, when it was attached to the ODF rosette instead. Water was pumped and filtered for Beryllium-7 analysis on some stations. Underway samples were also collected for multiple programs, and 5 ARGO floats were deployed during the eastern half of the cruise for the University of Washington.

Samples analyzed on board or stored for shore analysis are tabulated in the "Bottle Sampling" section later in the documentation. 10 test/rinse cast(s) and 9 aborted/canceled cast(s) (total for all cast types) were not reported.

	U.S. GEOTRACES EPZT Station/Cast Summary				
Station	Station	Total	Cast		
Туре	Numbers	Casts	Туреѕ		
All	All but 19	1	1 Underway Surface Sample (GeoFish + "Bubble" Lab)		
Super	1, 11, 18, 26, 36	15-16	1 Shallow / 1 Mid / 1-2 Deep GT-C/12L GoFlo 1 Shallow / 1 Mid / 1 Deep ODF/30L Niskin 1 Shallow / 1 Mid / 1 Deep McLane Pump 1 Pigments-Th-Ra ODF/30L Niskin 2 Shallow / 2 Deep Pb,Po-Pu-129I ODF/30L Niskin 1 Be-7 pump		
Shelf	2, 3, 4, 5	4-6	1-2 GT-C/12L GoFlo 1-2 ODF/30L Niskin 1 Pigments-Th-Ra ODF/30L Niskin 1 McLane Pump		
Demi	6, 8, 10, 12, 14, 16, 22, 24, 27, 29, 31, 33, 35	2	1 GT-C/12L GoFlo (~1000m depth) 1 ODF/30L Niskin (~1000m depth)		
Full	7, 9, 13, 15, 17, 20, 21, 23, 25, 28, 30, 32	9-11	 Shallow / 1 Mid / 1 Deep GT-C/12L GoFlo Shallow / 1 Mid / 1 Deep ODF/30L Niskin Shallow / 1 Deep McLane Pump Pigments-Th-Ra ODF/30L Niskin (extra Ra cast sta 7) Be-7 pump (stas 7,9,13,15,23,30,32 only) 		
Volcano	19	1	1 Deep ODF/30L Niskin		
Hemi	34	6	1 Shallow / 1 Deep GT-C/12L GoFlo 1 Shallow / 1 Deep ODF/30L Niskin 1 McLane Pump 1 Be-7 pump		
Teahitia Seamount	37	4	 3 Multibeam Surveys 1 ODF/30L Niskin (no bottle samples, just automated/default CTDO processing) 		

Description of Measurement Techniques

1. SIO/ODF CTD/Hydrographic Data: CTD, Salinity, Nutrients and Oxygen

Oceanographic Data Facility and Research Technicians Shipboard Technical Support Scripps Institution of Oceanography UC San Diego La Jolla, CA 92093-0214

Hydrographic measurements consisted of salinity and nutrient water samples taken from each CTD/rosette cast, plus dissolved oxygen from each ODF rosette cast. In addition, salinity and nutrient samples were taken from the surface fish and from Niskins attached to the wire at each Deep and Mid McLane pump cast.

Pressure, temperature, conductivity/salinity, dissolved oxygen, transmissometer, fluorometer, turbidity/LSS, and oxidation-reduction potention (ORP) data were recorded during all CTD/rosette profiles. Only raw voltages are reported for transmissometer, fluorometer, turbidity and ORP sensors. A Rinko optical oxygen sensor was also part of the ODF rosette, for evaluation purposes only; these data were recorded, but not processed or reported.

The distribution of samples is shown in figures 1.0 and 1.1.

Figure 1.0 U.S. GEOTRACES EPZT Sample distribution: stations 1-21.

-10-

Figure 1.1 U.S. GEOTRACES EPZT Sample distribution: stations 20-36.

1.1. ODF/30L-Niskin Water Sampling Package

ODF/30L-Niskin Rosette/CTD casts were performed with a package consisting of a 12-bottle rosette frame (SIO/STS), a 12- or 24-place carousel (SBE32) and 12 ea. 30L General Oceanics Niskin-style bottles with an absolute volume of 30L each. A 12-place carousel was used on station 1, but had repeated trip-confirmation failures during stations 2 and 3. It was replaced with an older 24-place carousel mid-station 3, which resolved the trip-confirmation issues. Prior to station 4, the carousel head was replaced by one with titanium instead of stainless steel latches in order to resolve mechanical tripping issues. This "hybrid" carousel was used successfully for the remainder of the cruise.

Underwater electronic components consisted of a Sea-Bird Electronics CTD (SBE9*plus*) with dual pumps (SBE5), dual temperature (SBE3*plus*), reference temperature (SBE35RT), dual conductivity (SBE4C), dissolved oxygen (SBE43), transmissometer (WET Labs C-Star), fluorometer (Seapoint SCF), Oxidation-Reduction Potention (ORP) sensor (NOAA), turbidity meter (Seapoint STM11) and altimeter (Simrad 807). A second dissolved oxygen + oxygen temperature sensor (JFE Advantech RINKO-III) was incorporated into the data stream for future sensor evaluation; it was not processed for this cruise.

Additionally, an SBE19*plus* CTD was mounted on the rosette during deep ODF casts for full and super stations beginning with station 25, since it could no longer be deployed on deep McLane pump casts after their wire was damaged.

Routine CTD maintenance included soaking the conductivity and oxygen sensors in fresh water between casts to maintain sensor stability, and syringing distilled water through the conductivity sensors to eliminate any accumulating bio-films. Rosette maintenance was performed on a regular basis. Bottle valves and O-rings were inspected for leaks. The rosette, CTD and carousel were rinsed with fresh water as part of the routine maintenance.

The sensors and instruments used during U.S. GEOTRACES EPZT, along with pre-cruise laboratory calibration information, are listed below in Table 1.1.0. Copies of the pre-cruise calibration sheets for various sensors are included in Appendix D.

Table 1.1.0 U.S. GEOTRACES EPZT Rosette Underwater Electronics.						
Instrument/Sensor	Mfr./Model*	Serial Number	CTD Channel	Stations Used (R=Rinse)	Pre-Cruise_Ca Date	alibration Facility*
Carousel Water Sampler	SBE32 (12-PI.) SBE32 (24-PI.)**	3231807-0456 32xxxxx-0030	n/a n/a	R2-3/3 3/5-36		
Reference Temperature	SBE35RT	3528706-0034 3516590-0011	n/a n/a	R2-3/5 3/6-36	18-Jun-2013 18-Jun-2013	SIO/STS SIO/STS
CTD	SBE9plus	09P21561-0569	n/a	R2-36		
Pressure	Paroscientific Digiquartz 401K-105	569-75672	Freq.2	R2-36	29-Jul-2013	SIO/STS
Primary Temperature (T1) Conductivity (C1) Dissolved Oxygen Pump	SBE3 <i>plus</i> SBE4C SBE43 SBE5T	03P-2333 04-2659 43-0875 05-4890	Freq.0 Freq.1 Aux2/V2 n/a	R2-36 R2-36 R2-36 R2-36	20-Aug-2013 28-Aug-2013 13-Sep-2013	SIO/STS SBE SBE
Secondary Temperature (T2) Conductivity (C2) Pump	SBE3 <i>plus</i> SBE4C SBE5T	03P-2202 04-3399 05-1409	Freq.3 Freq.4 n/a	R2-36 R2-36 R2-36	20-Aug-2013 27-Aug-2013	SIO/STS SBE
Altimeter§	Simrad 807 Tritech LRPA200	9711091 244480	Aux1/V0	R2, 1-36 R3 only	n/a n/a	n/a n/a
Chlorophyll Fluorometer§	Seapoint 6km	SCF2775	Aux1/V1	R2-36	17-Dec-2009	Seapoint
Oxidation-Reduction Potention Sensor	NOAA	ORP4†	Aux2/V3	1-36	n/a	n/a
Transmissometer	WET Labs C-Star	CST-491DR CST-400DR+	Aux3/V4	R2 only R3-36	25-Nov-2008 13-Sep-2013§	WET Labs WET Labs
Turbidity Meter (LSS)§	Seapoint 6km	STM11-14059‡	Aux3/V5	1-36	n/a	n/a
Diss. Oxygen Optode/Temp. (Experimental)	RINKO-III ARO-CAV	105	Aux4/ V6+V7	R2-36	7-Aug-2012	JFE Advantech
SeaCAT CTD	SBE19plus	19P-5236‡	(internally recorded)	25-36 "Deep" casts only	unknown	unknown
Deck Unit (in lab)	SBE11plus V2	11P21561-0518	n/a	R2-36		

All listed sensors / instruments belong to SIO/STS, unless otherwise noted.

+ Owned by UW † Owned by NOAA-PMEL ‡ Owned by WHOI

* SBE = Sea-Bird Electronics SIO/STS = Scripps' Shipbd. Tech. Support Calibration Facility

** older-style SBE32 for 3/5-3/7; then older base with titanium head from newer-style SBE32 for stations 4-36.

§ Altimeters: Simrad 807 has a 500m range, Tritech LRPA200 has a 200m range. Transmissometers: several shipboard "deck" calibrations also occurred during EPZT Fluorometer used 10x cable. Turbidity meter used 5x standard gain, MCBH6M connector. The SBE9*plus* CTD was mounted horizontally in an SBE CTD cage attached to and centered on the bottom of the rosette frame, allowing free flow of water to the temperature sensor. The SBE3*plus* temperature, SBE4C conductivity and SBE43 dissolved oxygen sensors and their respective pumps and tubing were mounted horizontally in the CTD cage. The transmissometer was mounted horizontally, and the fluorometer was mounted vertically near the bottom of the rosette frame. The Rinko DO sensor was mounted horizontally to the SBE9 body, and the altimeter was mounted on the inside of the bottom frame ring. The ORP was mounted vertically, adjacent to the altimeter, with the sensor end looking downward into clean water during the down-cast. The turbidity sensor was mounted to the underside of a frame support arm at approxiately a 30 degree angle looking inward toward the transmissometer. Table 1.1.1 shows height of the sensors referenced to the bottom of the frame.

Table 1.1.1 Heights (in cm) referenced to bottom of rosette frame				
Instrument/Sensor	Height in cm			
Pressure Sensor (inlet to capillary tube)	27			
Temperature (probe tip at TC duct inlet)	15			
SBE35RT (centered between T1/T2 on same plane)	15			
Altimeter	2			
Fluorometer	12			
ORP	10			
Transmissometer	12			
Turbidity (LSS)	50			
Rinko DO	28			
SeaCAT CTD (stations 25,26,28,30,32,34,36 deep casts only)	15			
30L-Niskin centerline	124			
Reference (Surface Zero tape on wire)	280			

The ODF rosette system was suspended from a UNOLS-standard three-conductor 0.322" electromechanical sea cable attached to the R/V Thomas G. Thompson's Markey DESH-5 (50hp) winch. One conductor in the sea cable was used for power and signal; the sea cable armor was used for ground. The ship's poured termination, done several months prior to the cruise and only used for 5 casts before EPZT, was used through the first ODF cast of station 26.

Shortly after the 10m equilibration "soak" at the start of station 26 cast 4, the ODF rosette was accidentally brought up into the overbearing block by the winch driver. Tensions exceeded 8500 lbs. for over 30 seconds. Thanks to an alert scientist sampling on deck, the rosette was safely returned to the deck. As a precautionary measure, 50m of wire was removed, and a new, standard SIO/STS full (electrical and mechanical) cable grip termination was applied prior to the next ODF cast.

1.2. Navigation and Bathymetry Data Acquisition

Navigation data were acquired at 1-second intervals from the ship's C&C Technologies C-Nav DGPS receiver by a Linux system starting before ship departed Manta, Ecuador until after it docked in Papeete, Tahiti.

Center-beam bathymetric and hull-depth correction data from the Kongsberg-Simrad EM 302 Multibeam Echosounder system were acquired by the ship, and fed into the ODF Linux systems through a serial data feed. The EM 122 format in the SIO/ODF software was the same as the EM 302, and was used to acquire the depth and correct for the hull depth. Sound velocity values were intermittently adjusted by the SSSG Technicians using ODF CTD data as the cruise progressed.

Bathymetry and navigation data were merged and stored on the ODF systems, and data were made available as displays on the ODF acquisition system during casts. Bottom depths associated with rosette casts were recorded on the Console Logs during deployments. However, the automatically recorded Multibeam depths were extracted from the stored navigation data and used for cast event depths in the Exchange format files.

1.3. SIO/ODF CTD Data Acquisition and Rosette Operation

The SIO/ODF CTD data acquisition system consisted of an SBE-11*plus* (V2) deck unit and two networked generic PC workstations running CentOS-5.9 Linux. Each PC workstation was configured with a color graphics display, keyboard, trackball and DVD+RW drive. Both systems had a Comtrol Rocketport PCI multiple port serial controller, each providing 8 additional RS-232 ports. The systems were interconnected through the ship's network. These systems were available for real-time operational and CTD data displays, and provided for CTD and hydrographic data management.

One of the workstations was designated the SIO/ODF CTD console and was connected to the CTD deck unit via two RS-232 cables, one for the CTD signal feed and the other as a modem for carousel communication. The CTD console provided an interface and operational displays for controlling and monitoring a CTD deployment and closing bottles on the rosette. The other workstation was designated as the website and database server, and maintained the hydrographic database for GEOTRACES EPZT. Redundant backups during casts were managed automatically. Both PCs were synced with the ship's timeserver on a regular basis to keep accurate UTC time.

The SBE9*plus* CTD supplied a standard SBE-format data stream at a data rate of 24 Hz (frames/second). The CTD was connected to an SBE32 12- or 24-place carousel, providing for sea cable operation. Power to the SBE9*plus* CTD and sensors, SBE32 carousel and Simrad altimeter was provided through the sea cable from an SIO/STS SBE11*plus* deck unit in the computer lab.

An SBE35RT reference temperature sensor was connected to the SBE32 carousel and recorded a temperature for each bottle closure. These temperatures were used as additional CTD calibration checks. The SBE35RT was utilized using Sea-Bird Electronics' recommendations (*http://www.seabird.com*).

Details about the sensors and instruments used during EPZT are listed above in table 1.1.0.

SIO/ODF CTD deployments were initiated by the console operator after the ship stopped on station. The acquisition program was started and the deck unit turned on at least 2 minutes prior to package deployment. The watch maintained a console operations log containing hand-entered metadata for each deployment, a record of every attempt to close a bottle and any relevant comments. The deployment and acquisition software presented a short dialog instructing the operator to turn on the deck unit, to examine the on-screen CTD data displays and to notify the deck watch that this had been accomplished.

The deck watch prepared the rosette 5-15 minutes prior to each cast. The bottles were cocked and all valves, vents and lanyards were checked for proper orientation. Once stopped on station, the rosette was moved out from the hangar to the deployment location under the squirt boom using a pallet jack. The CTD was powered up and the data acquisition system started from the computer lab. Tag lines were threaded through the rosette frame and syringes were removed from CTD intake ports. The rosette was unstrapped from the pallet. The winch operator was directed by the deck watch leader to raise the package. The squirt boom was extended outboard and the rosette package was quickly lowered into the water.

On the last/deep cast of each Shelf, Hemi, Full and Super station from station 4 onward, a mono-corer was suspended below the rosette on a 20 meter braided line. An "umbrella" of plastic corrugated sheeting was placed on the line above the corer to shield it from the altimeter. This setup was hooked to the rosette before deployment, then an outrigger plank was used to push the line away from the ship. On station 18, over the East Pacific Rise, it was speculated that there would not be enough sediment depth to deploy this corer without damage, so a "wax corer" (steel ball coated with soft wax) was utilized instead on two deep casts. The SIO/ODF "Deep" cast was always the last event of the station to preclude extruded mud or sediment exiting the core on the up-cast from contaminating other samples in the water column.

Rosette tag lines were removed and the package was lowered to 10 meters, or deeper in heavier seas. The CTD sensor pumps were configured with a 5-second start-up delay after detecting seawater conductivities. The console operator checked the CTD data for proper sensor operation and waited for sensors to stabilize. Then the winch operator was directed to bring the package back to the surface, rezero the wire-out and start the descent to a specified target depth (wire-out), based on CTD depth shown on the console display.

The CTD profiling rate was at most 30m/min to 100m and up to 60m/min deeper than 100m, depending on sea cable tension and sea state. As the package descended toward the target depth, the rate was reduced to 30m/min at 100m from the bottom. Casts were lowered to pre-determined target depths, depending on the type of sampling being done. Most deep rosette casts were lowered to within 5-10 meters of the bottom, using the altimeter, winch wire-out, CTD depth and echosounder depth to determine the distance of the package from the bottom for a safe approach.

For each up-cast, the winch operator was directed to stop the winch at up to 12 pre-determined sampling depths, chosen by the GEOTRACES program participants during the first cast at each station. Bottles were closed on the up-cast by operating an on-screen control, nominally 30-40 seconds after the package stopped to allow the rosette wake to dissipate and the bottles to flush. The winch operator was instructed to proceed to the next bottle stop at least 10 seconds after closing bottles to ensure that stable CTD data were associated with the trip, and to allow the SBE35RT temperature sensor to measure bottle trip temperature.

The progress of the deployment and CTD data quality were monitored through interactive graphics and operational displays. Bottle trip locations were transcribed onto the console and sample logs. The sample log was used later as an inventory of samples drawn from the bottles. Bottle sampling for specific programs was outlined on sample log sheets prior to cast recovery or at the time of collection.

The deck watch leader directed the package to the surface after the last bottle trip. Recovering the package at the end of the deployment was essentially the reverse of launching, with the additional use of poles and snap-hooks to attach tag lines to the rosette. Recovery of the corer was made easier with a block rigged to the aft neck of the boom, to assist in keeping the line away from the ship as well as easing the hauling-in process. The rosette was secured on the pallet and moved into the hangar for sampling. The bottles and rosette were examined before samples were taken, and anything unusual was noted on the sample log.

The console operator terminated the data acquisition, waited for the SBE35RT data to auto-upload through the deck unit modem channel, then turned off the deck unit and assisted with rosette sampling.

1.4. ODF CTD Data Processing

Shipboard CTD data processing was performed automatically at the end of each deployment using SIO/STS CTD processing software v.5.1.6-1. Raw GT-C CTD data and bottle trip files, acquired by SBE Seasave V 7.17a on a Windows XP workstation, were also imported into the Linux processing system, providing a backup of the raw data.

Pre-cruise laboratory calibrations were applied, then CTD data were processed into a 0.5-second time series, bottle trips were extracted, and a 1-decibar down-cast pressure series of the data was created. The pressure-series data were used by the web service for interactive plots, sections and CTD data distribution. Time-series data, and eventually basic up-cast pressure-series data, were also available for distribution through the website.

SIO/ODF CTD data were examined at the completion of each deployment for clean, corrected sensor response and any calibration shifts. As bottle salinity and oxygen results became available, they were used to refine shipboard conductivity and oxygen sensor calibrations.

Theta-S and theta-O₂ comparisons were made between down- and up-casts as well as between groups of adjacent deployments. Vertical sections of measured and derived properties from sensor data were checked for consistency.

After final processing, corrected CTDO trip data were updated into the bottle database using SIO/STSprocessed data for the ODF/30L casts. Shipboard Seasave-processed CTDO values were used for the GT-C/12L casts' trip data. Only the SIO/STS processing details are documented here.

1.5. SIO/ODF CTD Acquisition and Data Processing Details

Adjustments to the conductivity "advance" time (default: 0.073 seconds) were examined by re-averaging data from the stored 24 Hz data at various time intervals, then evaluating down- and up-cast salinity spiking and noise levels in sharp gradients and in deep water for multiple casts from stations 1 and 7. An

additional 0.06-second "advance" was applied to the primary conductivity sensor, and a 0.04-second "advance" was used for the secondary. The new "advance" times were applied by re-averaging all casts from stations 1-7, and applied through real-time software starting with station 8.

The same primary and secondary sensor pairs were used through-out the cruise. Primary T/C sensors were used for all casts of reported ODF-30L CTD data: the background salinity noise level was lower than the secondary pair, and deep Theta-Salinity overlays appeared to be a bit more consistent from cast to cast.

The following table identifies problems or comments noted during specific SIO/ODF casts (NOTE: mwo = meters of wire out on winch):

Sta/Cast Comment

- Start New, baked Viton O-rings installed on all bottles before first Rinse cast. Used Markey DESH-5 winch for ODF 30L rosette casts; used Thompson's existing termination from 2 months prior to start of EPZT. Start with Simrad altimeter (500m range).
- 999/05 Rinse 2 30-ODF Test cast; 0.01 mS/cm offset between C1 and C2. 12 bottles full range to calibrate O2 and check which C sensor is offset. NIOZ corer interferes with altimeter readings: 24.4m the entire cast, even though cast never went within 2000m of the sea floor. Many bottles leaked due to new O-rings settling into caps: adjusted O-rings/caps; also adjusted spigots on two bottles due to leaks.
- Transit On-deck tensiometer test done to adjust slope/offset on winch readings. During transit between Rinse 2 and Rinse 3, 7 transmissometers were collected and lab-tested for start-of-cruise characterization. Installed transmissometer 400DR (UW) to replace 491DR (SIO): had more recent factory calibration (2013 vs 2008).
- 998/03 Deck/air calibration done on transmissometer 400DR just prior cast. Rinse 3 30-ODF Test cast; 0.01 mS/cm offset between C1 and C2 remains. Using 200m altimeter to check interference of NIOZ corer on backup altimeter: same 24.4m readings through-out cast. Only one bottle had top-cap leak on recovery, fixed.
- Stas 1-37 Back to using Simrad altimeter; added NOAA ORP and Seapoint Turbidity Meter from station 1 onward. No conductivity sensor changes: check-salts were an even split between the 2 C sensors. In addition to 0.073-second TC advance applied by Deck Unit, used additional lags through ODF software to match T/C with minimal salinity spiking: 0.06-second (primary T/C), 0.04-second (secondary T/C). Re-averaged stations 1-7 with new lags, applied realtime for station 8 onward.
- 002/02 Surface soak done mid-thermocline, never went back up to surface mixed layer. Using down-cast, with a few despiked O2 levels, to get near-surface O2 and T/C, almost back to mixed layer.
- 002/04 SBE35RT-0034 changed from 1 to 4 readings per trip prior to this cast. Cast NOT REPORTED: NIS-1, NIS-2 did not close: NO-confirms on carousel. Re-cocked rosette without sampling, and re-did as cast 5.
- 002/05 Bottles 1-4 did not close: 3 NO-confirms at each, with carousel repositioned between each attempt. Bottles 5-12 all got good confirms.
- 003/02 Cast ABORTED: NIS-1 did not fire. no SBE35RT data (intentionally). 5-10 minutes postcast before deck unit turned off.
- 003/03 Fixed/switched cable prior to cast: no SBE35RT data (intentionally). Direct cable between carousel and SBE9 without SBE35RT (not a wye). Cast ABORTED: NIS-1 did not fire. 12-place carousel acting up; after this cast, changed out carousel for a UW 24-place SBE carousel (S/N 0030, an early SBE version with stainless steel latches).

Sta/Cast Comment

- 003/05 24-place carousel installed prior to cast: still trip confirm problems. NO-confirm on NIS-4, repositioned twice and tried a total of 3 times. All bottles except NIS-4 and NIS-12 closed.
- 003/06 Switch SBE35RT from 35-0034 to 35-0011 prior to cast: still confirm problems. Cast NOT REPORTED: Bottles 1-10 did not confirm, bottles 11-12 confirmed but came up open. Only NIS-1 and NIS-6 closed. No SBE35RT data came through.
- 003/07 All bottles confirmed; only NIS-4, NIS-10 and NIS-12 did not close. All failures to close were mechanical issues (with carousel), not electronic communication issues.
- 004/02 Prior to station 4, carousel head changed out for the one on spare UW rosette (with titanium latches). No routine tripping issues from station 4 onward.
- 004/04 A cone-shaped cloaking device ("umbrella"), fashioned from corrugated plastic sheeting formerly used as box-spacers, was placed on wire between NIOZ corer and altimeter to mask the corer from the altimeter. It was acoustically nearly opaque, the altimeter readings were "normal", and the first core was successfully retrieved. Awkward for deployment and recovery, but it works.
- 005/06 "Inelegant core recovery": lost core, apparently dumped out during up-cast/recovery. Deployment/recovery procedure for corer refined/streamlined throughout the cruise.
- 007/02 Changed SBE35RT-0011 to use 4 readings vs. 1 before station 7/2.
- 007/10 Added this cast to collect Radium missed from deep pump cast 3.
- 007/12 NIS-12 failed to close on this cast. After station 7 complete: change configuration to use trip position 22 for NIS-12.
- 011/04 Exceptional ship-roll noise vs any other cast not sure why.
- 012/02 Deck/air calibration done on transmissometer 400DR prior to cast, in transit to station 12.
- 018/16 Cast ABORTED and brought back to surface: Deck Unit turned off at 772dbar down, apparently came unplugged. Shifted power cord to UPS for Linux PCs before station 21.
- 018/17 New cast 17 started in-water immediately following cast 16. Apparently came out for a moment, due to big spike in density at surface. First use of Rob's wax corer: a steel fishing weight coated with wax to collect sediment from the fresh lava flow that would likely break the mono-corer.
- 020/02 Deck/air calibration done on transmissometer 400DR prior to this cast.
- 021/04 Extra trigger (op.error) after last bottle fired; removed from data files.
- 021/06 Winch started down from 10dbar soak without returning to surface; came back up from 30dbar, then down.
- 022/02 Recovered rosette pre-deployment, in water 3 minutes later.
- 025/09 Lam SeaCAT CTD strapped onto ODF rosette in addition to the corer. Forgot yoyo back to surface after cast start, yet console op noticed the salts did not match top 15m. No good data for top 12dbar (secondary) or 15dbar (primary); using the primary, since there's a big mixed layer and up-casts are too noisy. Surprisingly, oxygen came in very fast compared to salinity. Winch overshot 3801dbar trip by 11m, back down; after trip, cons. op. noticed winch went down, not up, for about 1 minute (45m total) to 3847dbar.

Sta/Cast Comment

- 026/04 Cast ABORTED: rosette package hit the winch block on "return to surface" after soak winch went wrong way. Scientist sampling on deck heard/saw/reported the incident promptly to winch and console ops. Over 8000lbs of pressure on the wire for more than 25 seconds at initial "two-block". Wire looked ok at 10m, but recovered to check.
- 026/05 Cast CANCELED: this cast was started on the console, but never went in the water: decided to re-terminate due to calculated stress on the wire from the "two-blocking". Wire reterminated with the standard SIO/STS method, after removing 50m of wire.
- 026/15 Winch only yoyo'd back to 11dbar after soaking at 19dbar; probably forgot to rezero the wire-out. Pressure-sequenced using the first-down (pre-soak) from 7dbar to recover some of the lost surface data.
- 028/02 Deck/air calibration done on transmissometer 400DR prior to cast, in transit to station 28.
- 030/11 T/C not stable before yoyo back to surface: noisy at start, despiking fixed most of it.
- 032/06 Multibeam off for about an hour starting mid-up-cast; no end reading.
- 035/02 CTDO O2 seems low relative to nearby casts in this minimum area (107-150 dbar); no bottles to compare with, and only a single cast on this station.
- 036/02 Shift in transmissometer (4.623 to 4.615) at 2400m on up-cast ectoplasm on window? Offset persisted to 180m and surface ocean particle max.
- 036/15 At altim=50: slow to 20m/min, at altim=30: slow to 10m/min; bottom approach "soft and soupy". Deck/air calibration done on transmissometer 400DR 17 hrs after cast, in transit to Teahitia survey area. Later during transit, various transmissometers were collected and lab-tested for end-of-cruise characterization.
- 037/01 Extra station at Teahitia Seamount not part of EPZT, "exploratory" cast only. No bottle O2 data, used CTDO corrections from cast 036/11, which gave best down/up overlay. However, CTDO looks nothing at all like station 36, or its own SBE43 or Rinko O2 unprocessed voltages. Coded CTDO2 data from this entire cast as questionable.

1.6. SIO/ODF CTD Sensor Laboratory Calibrations

Laboratory calibrations of the SIO/ODF CTD Pressure, Temperature, Conductivity and Dissolved Oxygen sensors, as well as the Reference Temperature sensors, were performed prior to U.S. GEOTRACES EPZT. The sensors and calibration dates are listed in Table 1.1.0. Copies of these calibration sheets, as well as manufacturer and deck calibration data for the UW Transmissometer, are in Appendix D at the end of this SIO/ODF report.

1.7. ODF/30L CTD Shipboard Calibration Procedures

A single SBE9*plus* CTD (S/N 09P21561-0569) was used for all ODF/30L rosette/CTD casts during EPZT. The CTD was deployed vertically, due to space limitations in the 12-place rosette, with all sensors and pumps aligned horizontally as recommended by SBE.

An SBE35RT Digital Reversing Thermometer served as an independent calibration check for T1 and T2 sensors. *In situ* salinity and dissolved O_2 check samples collected during each cast were used to calibrate the conductivity and dissolved O_2 sensors.

1.7.1. CTD Pressure

The Paroscientific Digiquartz pressure transducer (S/N 569-75672) was calibrated in July 2013 at the SIO/STS Calibration Facility. The calibration coefficients provided on the report were used to convert frequencies to pressure. The SIO/STS pressure calibration coefficients already incorporate the slope and offset term usually provided by Paroscientific.

During EPZT, the initial deck readings for pressure indicated a -0.5 decibar pressure offset was needed, typically because CTDs are calibrated horizontally but deployed vertically. This settled down to merely -0.2 decibars within a few stations. An offset of -0.2 decibars was applied to all casts by re-averaging stations 1-7, and using this offset during acquisition from station 8 onward.

Residual pressure offsets (the difference between the first and last submerged pressures, after the offset corrections) varied from -0.1 to +1.0 decibars. Pre- and post-cast on-deck/out-of-water pressure offsets varied from -0.1 to +0.5 decibars before the casts, and -0.7 to +0.1 decibars after the casts; only 2 casts were below -0.5 decibars post-cast. Most of the +0.4- and +0.5-decibar start-cast offsets were from casts where the CTD was powered on less than 4 minutes before the rosette entered the water.

1.7.2. CTD Temperature

The same SBE3*plus* primary (T1: 03P-2333) and secondary (T2: 03P-2202) temperature sensors were used during U.S. GEOTRACES EPZT. Calibration coefficients derived from the pre-cruise calibrations were applied to raw primary and secondary sensor frequencies during each cast. Corrections for both temperature sensors were determined near the end of the cruise.

Two different SBE35RT sensors (S/N 3528706-0034 for Rinse2 through station 3/5, S/N 3516590-0011 for stations 3/6 through 37) were used as a tertiary temperature check. The sensor was located equidistant between T1 and T2 with the sensing element aligned in a plane with the T1 and T2 sensing elements. SBE35RT Digital Reversing Thermometers are internally-recording temperature sensors that operate independently of the CTD. According to the manufacturer's specifications, the typical stability for an SBE35RT sensor is 0.001°C/year.

The SBE35RT is triggered by the SBE32 carousel in response to a bottle closure. The SBE35RT sensors on EPZT were initially set to take a single reading, but after a few casts, each sensor was re-set to internally average over a more typical 4 sampling cycles (a total of 4.4 seconds).

Two independent metrics of calibration accuracy were examined. At each bottle closure, the primary and secondary temperature were compared with each other and with the SBE35RT temperature.

Both temperature sensors were first examined for drift with time, using the more stable SBE35RT as a reference. Bottles at all depths were used, but only for casts deeper than 2000 decibars. Using these casts avoided skewing the fit to the more numerous and less stable shallower bottle differences. A filter was also applied to omit high-gradient trip data by using only the T1-T2 differences within $\pm 0.005^{\circ}$ C.

T1 needed a first-order fit vs time; T2 required a second-order fit over time, as the differences changed most rapidly at the start of the cruise. The total offset drift over the whole cruise for either sensor was less than 0.001°C.

In order to better align deeper and shallower data, a pressure correction was applied to each temperature sensor. The polynomial fits were examined using low-gradient bottles only (T1-T2 within ± 0.005 °C) for all stations, and for stations deeper than 2000 decibars only.

T1 required a simple slope vs pressure, using all stations. T2 required a second-order correction vs pressure, using only stations deeper than 2000 decibars in order to pull the deepest data in-line with the shallow and intermediate-depth data.

Neither of the temperature sensors exhibited a temperature-dependent slope, or required any further adjustment vs pressure or time.

The final corrections for T1 temperature data reported on EPZT are summarized in Appendix A. Corrections to the temperature sensors had the form:

 $T1_{ITS90} = T1 + tp1 * P + t0$

$$T2_{ITS90} = T2 + tp2 * P^2 + tp1 * P + t0$$

Residual temperature differences after correction are shown in figures 1.7.2.0 through 1.7.2.8.

Figure 1.7.2.0 EPZT SBE35RT-T1 by pressure (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.2.1 EPZT SBE35RT-T2 by pressure (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.2.2 EPZT T1-T2 by pressure (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.2.3 EPZT SBE35RT-T1 by station (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.2.4 EPZT Deep SBE35RT-T1 by station (Pressure >= 1000 dbars).

Figure 1.7.2.5 EPZT SBE35RT-T2 by station (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.2.6 EPZT Deep SBE35RT-T2 by station (Pressure >= 1000 dbars).

The 95% confidence limits for the EPZT mean low-gradient differences are $\pm 0.00862^{\circ}$ C f or SBE35RT – T1 and $\pm 0.00396^{\circ}$ C f or T1 – T2. The 95% confidence limit for deep temperature residuals (where pressure > 1000 dbars) is $\pm 0.00147^{\circ}$ C f or SBE35RT – T1 and $\pm 0.00084^{\circ}$ C f or T1 – T2.

1.7.3. CTD Conductivity

The same SBE4C primary (C1: 04-2659) and secondary (C2: 04-3399) conductivity sensors were used for all of EPZT. Primary T/C sensor data were used to report final CTD data for all casts.

Calibration coefficients derived from the pre-cruise calibrations were applied to convert raw frequencies to conductivity. Adjustments to the default conductivity "advance" time (0.073 seconds, through the deck unit) were made while processing SBE asciihex files to half-second time-series data. An additional 0.06 seconds was used for T1/C1, and 0.04 seconds for T2/C2 data, determined from tests and plots using deep casts from stations 1 and 7.

Shipboard conductivity corrections were applied to primary and secondary conductivity data for each cast at the end of the cruise. Corrections for both CTD temperature sensors were finalized before analyzing conductivity differences.

Two independent metrics of calibration accuracy were examined. At each bottle closure, the primary and secondary conductivity were compared with each other. Each sensor was also compared to conductivity calculated from check sample salinities using CTD pressure and temperature.

Theta-Salinity comparisons showed that cast-to-cast deep CTD data were well-aligned before applying any offsets. Differences from all stations were included in the fits for conductivity corrections.

The differences between primary and secondary temperature sensors were used as filtering criteria for conductivity fits to reduce the contamination of conductivity comparisons by package wake. The coherence of this relationship is shown in figure 1.7.3.0.

Figure 1.7.3.0 EPZT Coherence of conductivity differences as a function of temperature differences.

Uncorrected conductivity comparisons are shown in figures 1.7.3.1 through 1.7.3.3.

Figure 1.7.3.1 EPZT Uncorrected $C_{Bottle} - C1$ by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.2 EPZT Uncorrected $C_{Bottle} - C2$ by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.3 EPZT Uncorrected C1 – C2 by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

The C1 – C2 differences were fairly tight throughout the cruise, but with a definite "split" at mid-range pressures. Offsets for both C sensors were evaluated for drift with time, as well as for dependencies on pressure or conductivity, using $C_{Bottle} - C_{CTD}$ differences. The most clearly defined dependence for both sensors was conductivity, which typically shifts between pre- and post-cruise SBE laboratory calibrations.

Parabolic fits of $C_{Bottle} - C_{CTD}$ values for all trip data were applied to each conductivity sensor.

Time and pressure dependencies for C1 and C2 were then re-examined. C1 needed only a linear correction, and C2 required a parabolic correction as a function of pressure. A second-order fit was applied to C2 in order to pull in deep data without shifting the near-0 surface differences.

Both $C_{Bottle} - C1$ and $C_{Bottle} - C2$ differences shifted abruptly down, approximately -0.0015 for C1 and -0.002 for C2, between stations 7 and 8. The $C_{Bottle} - C_{CTD}$ differences drifted slowly back up over the next 3 weeks. The C1 – C2 differences were fairly stable over the entire cruise. The Theta-S comparisons of adjacent (deep) CTD casts indicated no need for adjustment to S1.

All of these factors indicated the bottle salinity data likely shifted, not the CTD data. Statistics from the salinity runs showed a fairly steady, very small (typical) drift in the standard dial over the course of the cruise. The shift between any 2 runs would result in less than a 0.0005 change in salinity. There were no notes regarding any Autosal maintenance done between stations 7/8, and the lab temperature was fairly stable through-out the cruise. The ultimate cause of the shift could not be determined.

The residual conductivity differences after correction are shown in figures 1.7.3.4 through 1.7.3.15.

Figure 1.7.3.4 EPZT Corrected $C_{Bottle} - C1$ by pressure (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.5 EPZT Corrected $C_{Bottle} - C2$ by pressure (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.6 EPZT Corrected C1 – C2 by pressure (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.7 EPZT Corrected C_{Bottle} – C1 by conductivity (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.8 EPZT Corrected C_{Bottle} – C2 by conductivity (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.9 EPZT Corrected C1 – C2 by conductivity (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.10 EPZT Corrected C_{Bottle} – C1 by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.11 EPZT Deep Corrected $C_{Bottle} - C1$ by station (Pressure >= 1000 dbars).

Figure 1.7.3.12 EPZT Corrected C_{Bottle} – C2 by station (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.3.13 EPZT Deep Corrected C_{Bottle} – C2 by station (Pressure >= 1000 dbars).

Figure 1.7.3.14 EPZT Corrected C1 – C2 by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.15 EPZT Deep Corrected C1 – C2 by station (Pressure >= 1000 dbars).

The final corrections for the sensors used on EPZT are summarized in Appendix A. Corrections made to the conductivity sensors had the form:

 $C1_{cor} = C1 + cp1 * P + c2 * C1^{2} + c1 * C1 + c0$

 $C2_{cor} = C2 + cp2 * P^{2} + cp1 * P + c2 * C2^{2} + c1 * C2 + c0$

Salinity residuals after applying shipboard P/T/C corrections are summarized in figures 1.7.3.16 through 1.7.3.18. Only CTD and bottle salinity data with "acceptable" quality codes are included in the differences.

Figure 1.7.3.16 EPZT Salinity residuals by pressure (-0.01°C ≤T1 – T2≤0.01°C).

Figure 1.7.3.17 EPZT Salinity residuals by station (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.3.18 EPZT Deep Salinity residuals by station (Pressure >= 1000 dbars).

Figures 1.7.3.17 and 1.7.3.18 represent estimates of the salinity accuracy of EPZT. The 95% confidence limits are ± 0.00833 relative to bottle salinities for all salinities, where T1-T2 is within $\pm 0.01^{\circ}$ C; and ± 0.00184 relative to bottle salinities for deep salinities, where pressure is more than 1000 decibars.

1.7.4. CTD Dissolved Oxygen

A single SBE43 dissolved O_2 sensor (DO: 43-0875) was used during EPZT. This dissolved O_2 sensor was plumbed into the primary T1/C1 pump circuit after C1.

The SBE43 DO sensor was calibrated to dissolved O_2 water samples taken at bottle stops by matching the down-cast CTD data to the up-cast trip locations on isopycnal surfaces, then calculating CTD dissolved O_2 using a DO sensor response model and minimizing the residual differences from the bottle samples. A non-linear least-squares fitting procedure was used to minimize the residuals and to determine sensor model coefficients, and was accomplished in two stages.

The time constants for the lagged terms in the model were first determined for the sensor. These time constants are sensor-specific but applicable to an entire cruise. Then casts were fit individually to bottle sample data.

No bottle samples were taken in the shallower ranges of Deep and Mid casts on EPZT. Sample data from other casts at the same station or nearby stations were used in order to fit the upper parts of each deeper CTDO₂ cast. These bottle values were initially matched by pressure to the down-cast being fit, then adjusted shallower or deeper to maintain the original raw data "structure" of the cast. Bottle oxygen data

from nearby casts with similar deep TS structure were also used to help fit CTD O₂ data for casts with one or more mis-tripped bottles.

At the end of the cruise, standard and blank values for bottle oxygen data were smoothed, and the bottle oxygen values were recalculated. The changes to bottle oxygen values were less than 0.01 ml/L for all casts.

 $CTDO_2$ data were re-calibrated to the smoothed bottle values post-cruise. A different fitting option was used, which included both down- and up-cast CTD data. This was cumbersome when shallow bottle data from other casts had to be merged in to the fitting files; but when both down- and up-cast data were fit to match fairly closely, the down-cast fits seem to be better and more consistent than the shipboard versions. Up-cast CTDO₂ data still have inherently more noise and offsetting, due to bottle stops as well as the rosette agitating the water before the CTD sensors see it; so down-cast data are still reported for each CTDO full cast wherever possible.

Overlay plots of raw $CTDO_2$ voltage for all casts within a station were also used during the final fitting process to ensure the original shallow-range relationships of the casts were maintained during the fitting process. All casts within a station, as well as nearby stations, were compared on plots of Pressure and/or Theta vs O_2 to verify consistency over the course of EPZT.

Final CTDO₂ "trip" data were first updated into the bottle database the usual way, using pressure-series down-cast data. This generated some large bottle-CTD differences, especially in higher-gradient areas, on final check-plots. Out of curiosity, time-series $CTDO_2$ data were updated into the database, with the same "down-and-up" option used during fitting. This inserted the time-series up-cast CTDO data into the database for most casts. The Deep "corer" casts were an exception, instead using down-cast time-series data, because of software "hanging" at the corer sample (sample 13 or 14), with a database "pressure" deeper than the CTD cast itself.

These mostly up-cast CTDO₂ data generated a bottle-CTD standard deviation one-third the size of the original update method, particularly because of better matches in higher-gradient near-surface areas. A few remaining differences were double-checked, resulting in several re-fits of CTDO₂ data to bottles in near-surface areas. In addition, down-cast pressure-series data were still used for the CTDO₂ values in the database for several casts (1/4 1/11 1/13 1/15 3/5 3/7 5/4 36/8) in order to prevent bottom-of-cast "drifty" up-cast data from skewing the results.

Final CTD dissolved O₂ residuals for SIO/ODF casts are shown in figures 1.7.4.0-1.7.4.2.

Figure 1.7.4.0 EPZT O₂ residuals by pressure (-0.01°C \leq T1 – T2 \leq 0.01°C).

Figure 1.7.4.2 EPZT Deep O_2 residuals by station (Pressure >= 1000 dbars).

The standard deviations of 0.834 μ mol/kg for all oxygens and 0.457 μ mol/kg for deep oxygens are only presented as general indicators of goodness of fit. SIO/STS makes no claims regarding the precision or accuracy of CTD dissolved O₂ data.

The general form of the SIO/STS DO sensor response model equation for Clark-style cells follows Brown and Morrison [Brow78], Millard [Mill82] and Owens & Millard [Owen85]. SIO/STS models DO sensor responses with lagged CTD data. *In situ* pressure and temperature are filtered to match the sensor responses. Time constants for the pressure response (T_p), a slow (T_{Tf}) and fast (T_{Ts}) thermal response, package velocity (T_{dP}), thermal diffusion (T_{dT}) and pressure hysteresis (T_h) are fitting parameters. Once determined for a given sensor, these time constants typically remain constant for a cruise. The thermal diffusion term is derived by low-pass filtering the difference between the fast response (T_s) and slow response (T_l) temperatures. This term is intended to correct non-linearities in sensor response introduced by inappropriate analog thermal compensation. Package velocity is approximated by low-pass filtering 1st-order pressure differences, and is intended to correct flow-dependent response. Dissolved O_2 concentration is then calculated:

$$O_{2}mI/L = [C_{1} \cdot V_{DO}e^{(C_{2} \cdot \frac{P_{h}}{5000})} + C_{3}] \cdot f_{sat}(T, P) \cdot e^{(C_{4} \cdot T_{1} + C_{5} \cdot T_{s} + C_{7} \cdot P_{1} + C_{6} \cdot \frac{dO_{c}}{dt} + C_{8} \cdot \frac{dP}{dt} + C_{9} \cdot dT)}$$
(1.7.4.0)

where:

O ₂ ml/L	Dissolved O_2 concentration in ml/L;
V _{DO}	Raw sensor output;
C ₁	Sensor slope
C ₂	Hysteresis response coefficient
C ₃	Sensor offset
$f_{sat}(T, P)$	O ₂ saturation at T,P (ml/L);
Т	<i>in situ</i> temperature (°C);
Р	<i>in situ</i> pressure (decibars);
P _h	Low-pass filtered hysteresis pressure (decibars);
Τ _I	Long-response low-pass filtered temperature (°C);
Ts	Short-response low-pass filtered temperature (°C);
PI	Low-pass filtered pressure (decibars);
$\frac{dO_c}{dt}$	Sensor current gradient (µamps/sec);
$\frac{dP}{dt}$	Filtered package velocity (db/sec);
dT	low-pass filtered thermal diffusion estimate (T _s - T _l).
$C_4 - C_9$	Response coefficients.

T values and coefficients used to generate the SBE43 data (ml/L) for each cast are listed in Appendix B. CTD O_2 ml/L data are converted to μ mol/kg units on demand.

Manufacturer information on the SBE43 DO sensor, a modification of the Clark polarographic membrane technology, can be found at *http://www.seabird.com/application_notes/AN64.htm*.

A faster-response JFE Advantech Rinko III ARO-CAV Optical DO sensor (S/N 105), with its own oxygen temperature thermistor and not pumped, was installed on the rosette and integrated with the ODF CTD during all casts. ODF is currently evaluating this sensor, comparing its data with the SBE43 data from a recent CLIVAR cruise and considering its possible use as a primary sensor on future expeditions. Please contact ODF (odfdata@sts.ucsd.edu) for further information. Manufacturer information about the Rinko III sensor can be found at *http://www.jfe-advantech.co.jp/eng/ocean/rinko/rinko3.html*.

1.8. Rosette Bottle Sampling

After each rosette deployment except station 37, water samples were drawn from the bottles as follows:

Table 1.8.0 ODF/30L-Niskin Cast Sampling Order										
		Demi	Vol- cano	Super / Full / Hemi / Shelf				Super Only	All (exc.19)	
Parameters Sampled	ŧ	Shal- Iow	Deep	Shal- Iow	*Mid	*Deep	Pigments Shallow	2 Shallow/ 2 Deep	GeoFish" Surface	
CFCs	U	x		x	х	х	x (surface)			
He and other Noble Gases	U	x	x	x	х	x	x (surface)			
N ₂ / Ar	U	х		х	х	x				
O ₂	U	x	x	x	х	x	x	х		
N ₂ O	U			X**	х	X				
Total Diss. Mn / Al / Fe	U		x		x (21)	x (18,20,21)			x	
DIC	U	х		х	х	x	x (surface)			
¹⁴ C / ¹³ C	U			x	х	х	x (surface)			
Nutrients	U	х	х	х	х	x	x	х	x	
Salinity	U	х	x	x	х	x	x	х	х	
³ Н	U	x		x	х	x	x (surface)			
Pigments	U						x			
²³⁴ Th	U	x		x (34)			x			
²²⁶ Ra	U						х			
DOC	F	х		x	х	х			х	
d ¹⁵ N-NO ₂	F			x	х	Х				
d ¹⁵ N-NO ₃	F			x	х	х				
Thiols	F			X**	х	X**			Х	
Si Isotopes	F			X**	х	X**				
Th / Pa	F			x	х	x			х	
Nd / REE	F			x	х	x			х	
Pb / Po	F							x	x (Super)	
Pu/Np/Cs/Sr	F							х	x (Super)	
¹²⁹ I / ²³⁶ U	F							x	x (Super)	
NIOZ Corer	U					x (4-17,20-36)				
Wax Corer	U					x (18)				

‡ U (unfiltered) or F(filtered) sample

* Deep, and Mid, if warranted by station's multibeam depth.

** Not done/sampled on Hemi station 34.

SIO/ODF 30L Niskin serial numbers were assigned at the start of EPZT, typically corresponding to their rosette/carousel positions. Aside from various repairs along the way, one ODF 30L Niskin was changed out during this leg: NIS-2 was replaced by NIS-22 between stations 17 and 18 due to a spine leak.

Table 1.8.1 GT-C/12L-GoFlo Cast Sampling Order									
Station Type		Demi	Super / Full / Hemi / Shelf			All Super- GeoFish			
Parameters Sampled	Ŧ	Shallow	Shallow	MIQ.	Deep	Surface			
"Acropak" bottles:			1		1				
Nutrients (ODF)	U	Х	X	Х	X	Х			
Salinity (ODF)	U	Х	X	Х	X	Х			
Total Diss. Al / Mn / Fe (Resing)	U			Х	X				
d ¹⁵ N-NO ₃ (Casciotti)	F	Х				Х			
d ¹⁵ N-NO ₂ (Casciotti)	F	х				х			
diss. AI (Resing)	F	Х	Х	х	Х	Х			
diss. Mn (Resing)	F	Х	Х	х	Х	Х			
Co (Saito)	F	Х	Х	х	Х	Х			
Ga / Ba / V / Mo (Shiller)	F	Х	х	х	х	Х			
diss. Fe(II) Acropak (Moffett)	F		х	х	х				
Total diss. Fe (Moffett)	F		x (34,36)	x (36)	x (36)	x (36)			
diss. Fe (Sedwick)	F		х	х	х	Х			
Cu speciation (Barbeau)	F		х	х	х	Х			
Fe speciation (Buck)	F		х	х	х	Х			
diss. Trace Metals (Bruland)	F	Х	х	х	х	Х			
diss. Trace Metals (Wu)	F		х	х	х	Х			
Colloids (Wu)	F		х	х	х	Х			
Pb / Po (Flegal - shallow)	F	х	x	х	x	Х			
Pb / Po (Boyle - mid / deep)	F	Х	х	х	х	Х			
Fe / Zn / Cd Isotopes (John)	F		X	х	х	Х			
Diss. Trace Metals (Bruland)	U					Х			
"Particulate Membrane" bottles:	1				1				
TDS (Cutter)	F	X	X	х	x				
I (Cutter)	F	х	x	х	x	х			
diss. Fe(II) MOPS (Sta.1 only) or diss. Fe(II) Syringe (Moffett)	F	x	x	x	x				
Nutrients (ODF)	U	Х	X	х	х	Х			
Salinity (ODF)	U	Х	X	х	x	Х			
Phytoplankton (Twining) - Surface and DCM only	U	х	x			х			
MMHg / DMHg / Elemental Hg (Hammerschmidt/Lamborg)	F	х	x	х	х				
Total Hg (Lamborg/Hammerschmidt)	F	х	x	х	x	х			
NanoMolar Nutrients (Cutter)	F		X			Х			
As / Sb (Cutter)	F		x	х	x	Х			
Se (Cutter)	F		x	х	x	Х			
Partic./Cellular TM (Twining - shallow, Sherrell/German - mid/deep)	F	х	x	х	x				

‡ U (unfiltered) or F(filtered) sample* Deep, and Mid, if warranted by station's multibeam depth.
GT-C 12L Goflo serial numbers were assigned prior to the cruise, and were intentionally moved around to various carousel positions over the course of the expedition.

The correspondence between individual sample containers and the rosette bottle position from which the sample was drawn was recorded on the sample log for each cast. These bottle positions were numbered 1-12 for the ODF/30L Niskin Rosette, 13 for NIOZ mono-corer samples, 14 for wax corer samples, 25 for GeoFish surface samples and 1-24 for the GT-C/GoFlo Rosette. The sample log also included any comments or anomalous conditions noted about the rosette and bottles.

Normal sampling practice for the 30L Niskin rosette included opening the drain valve and then the air vent on the bottle, indicating an air leak if water escaped. This observation together with other diagnostic comments (e.g. "lanyard caught in lid", "valve left open"), which might later prove useful in determining sample integrity, were routinely noted on the sample log.

Drawing oxygen samples also involved taking the sample draw temperature from the bottle. The temperature was noted on the sample log and was sometimes useful in determining leaking or mistripped bottles.

Once individual samples had been drawn and properly prepared, they were distributed for analysis. Oxygen, nutrient and salinity analyses were performed on computer-assisted (PC) analytical equipment networked to the data processing computer for centralized data management.

Bottle Tripping Issues

The bottles in the table below did not close or were determined to be mistrips, usually by nutrient and dO_2 or dFe chemists, who analyzed and uploaded samples shortly after the casts were completed.

Individual mis-tripped bottles and all samples taken from them were quality-coded 4 (bad), since it is not clear exactly where they closed in the water column. More detailed comments appear in Appendix C.

	Table 1.8.2 Bottle Mistrips or Closure Problems							
Station	Sample	Bot.Ser.No.	GEOT.No.	Comment				
2	501-504	NIS-1-NIS-4	2281-2284	Niskin did not close.				
2	512	NIS-12	2292	Niskin closed, but no samples taken.				
3	504,512	NIS-4,NIS-12	2313,2321	Niskin did not close.				
3	704	NIS-4	2334	Niskin did not close.				
3	710	NIS-10	2340	Niskin did not close.				
3	712	NIS-12	2342	Niskin did not close.				
4	206	NIS-6	2373	Mistrip				
5	520	GF-46	2478	Goflo did not fire				
6	120	GF-46	3096	Goflo did not fire				
7	814	GF-18	3210	Mistrip				
7	1212	NIS-12	3266	Niskin did not close.				
11	1310	NIS-10	3679	Niskin did not close (lanyard).				
13	119-120	GF-02,GF-31	3759-3760	Mistrip				
17	105	GF-05	8258	Mistrip				
17	107	GF-07	8260	Mistrip; bottom ball leaked, snapped in van.				
17	120	GF-20	8273	Mistrip				
17	505	GF-47	8314	Mistrip				
17	803	GF-47	8361	Mistrip				
17	820	GF-46	8378	Spigot broke off, no samples taken.				
18	201	GF-48	8410	Mistrip				
18	207	GF-51	8416	Mistrip, re-snapped top ball in van.				
18	221	GF-47	8430	Mistrip				
23	609	NIS-9	9055	Niskin did not close, lanyard caught on latch.				
28	806-807	GF-05,GF-28	9670-9671	Mistrip				
30	806	GF-05	9815	Mistrip				

1.9. SIO/STS Bottle Data Processing

Water samples collected and properties analyzed shipboard were centrally managed in a relational database (PostgreSQL 8.1.23) running on a CentOS-5.9 Linux system. A web service (OpenACS 5.5.0 and AOLServer 4.5.1-1) front-end provided ship-wide access to CTD and water sample data. Web-based facilities included on-demand arbitrary property-property plots and vertical sections as well as data uploads and downloads.

The pressure at which each sample was tripped was marked by the CTD acquisition program for each group. A 3-second average of ODF-processed CTD trip data was loaded into the bottle database after each ODF/30L and GT-C/GoFlo cast. After ODF/30L CTD Oxygen corrections were determined, corrected CTDO values were also added to the database.

At the end of the cruise, all GT-C CTDO data were updated in the database using the post-cast Seasaveprocessed ".btl" file 5-second averaged CTD data, in order to include processed CTD Oxygen values. The 5-second average used resulted in slightly better agreement between CTD and GoFlo salinity values than the shorter 3-second average used for the Niskin rosette.

The sample log and any diagnostic comments were entered into the database once sampling was completed. Quality flags associated with sampled properties were set to indicate that the property had been sampled, and sample container identifications were noted where applicable (e.g., oxygen flask number).

Analytical results were provided on a regular basis by SIO/STS and other analytical groups during and at the end of the cruise, then incorporated into the database. These results included a quality code associated with each measured value and followed the coding scheme developed for the World Ocean Circulation Experiment Hydrographic Programme (WHP) [Joyc94]. In addition, non-standard quality codes "A" and "B" were used for several properties where the analysts desired to mark them as "Above" or "Below" detection limits for the analysis methods used.

Table 1.9.0 shows the number of samples drawn and the number of times each WHP sample quality flag was assigned for each SIO/STS hydrographic property reported:

Table 1.9.0 Frequency of WHP quality flag assignments for STS/ODF Samples, Stations 1-37								
	Reported			WHF	Quality C	odes		
	levels	1	2	3	4	5	7	9
ODF/30L Casts	:							
Bottle	1372	0	1346	0	13	0	0	13
Refc. Temp	1351	0	1292	59	0	0	0	21
CTD Oxy	1372	0	1371	1	0	0	0	0
CTD Salt	1372	0	1372	0	0	0	0	0
Oxygen	1341	0	1335	4	2	1	0	30
Salinity	1347	0	1339	7	1	0	0	25
Silicate	1347	0	1346	0	1	0	0	25
Nitrate	1347	0	1346	0	1	0	0	25
Nitrite	1347	0	1346	0	1	0	0	25
Phosphate	1347	0	1346	0	1	0	0	25
GT-C and Supe	r-GeoF Casts	*-						
Bottle	1743	0	1725	1	16	0	0	1
CTD Oxy	1612	0	1612	0	0	96	0	35
CTD Salt	1743	0	1743	0	0	0	0	0
Salinity	1739	0	1688	28	23	1	0	3
Silicate	1738	0	1721	2	15	2	0	3
Nitrate	1738	0	1721	2	15	2	0	3
Nitrite	1738	0	1721	2	15	2	0	3
Phosphate	1738	0	1723	0	15	2	0	3
* CTD Oxy and CTD Salt for GT-C casts are from Seasave-processed bottle files								

Various consistency checks and detailed examination of the data continued throughout the cruise. Data investigation comments are presented in Appendix C.

1.10. Salinity

Equipment and Techniques

A single Guildline Autosal 8400B salinometer (S/N 69-180) located in the hydro lab was used for all salinity measurements. This salinometer had been modified to include a communication interface for computer-aided measurement, a higher capacity pump and two temperature sensors. These sensors were used to measure air and bath temperatures.

Samples were analyzed after they had equilibrated to laboratory temperature, usually within 12-29 hours after collection. The salinometer was standardized for each group of analyses, 36 to 72 samples, using two fresh vials of standard seawater per group.

Salinometer measurements were aided by a computer using LabVIEW software developed by SIO/STS. The software maintained a log of each salinometer run, including salinometer settings and air and bath temperatures. The air temperature was displayed and monitored using a 48-hour strip-chart in order to observe cyclical changes. The program also guided the operator through the standardization procedure and making sample measurements. The analyst was prompted to change samples and flush the cells between readings.

Normal standardization procedures included flushing the cell at least 2 times with a fresh vial of IAPSO Standard Seawater (SSW), setting the flow rate as low as possible during the last fill, and monitoring the STD dial setting. If the STD dial changed by 10 units or more since the last salinometer run (or during standardization), another vial of SSW was opened and the standardization procedure was repeated to

verify the setting.

Samples were run using 2 flushes before the final fill. The computer determined the stability of a measurement and prompted for additional readings if there appeared to be drift. The operator could annotate problems in the salinometer log, and routinely added comments about cracked sample bottles, loose thimbles, salt crystals, sample volume or anything unusual about the sample or analysis.

Cases of samples were stacked next to the Autosal while equilibrating to room temperature. The temperature of the deepest sample (coldest) and surface sample (warmest) were monitored to determine when the case was ready to be analyzed.

Sampling and Data Processing

Salinity Measurements Made During GEOTRACES EPZT			
Cast Type	Number of Samples		
30-ODF	1347		
GT-C + Super-GeoF	1739		
McL-Prof Niskins	204		
Underway (mid-GeoF + Th)	80		
Lost Samples	1		
Total Salinity Samples	3371		

Salinity samples were drawn into 200 ml Kimax high-alumina borosilicate bottles, which were rinsed three times with the sample prior to filling. The bottles were sealed with custom-made plastic insert thimbles and kept closed with Nalgene screw caps. This assembly provides very low container dissolution and sample evaporation. Prior to sample collection, inserts were inspected for proper fit and loose inserts replaced to insure an airtight seal. The draw and equilibration times were logged for all casts. Laboratory temperatures were logged at the beginning and end of each run.

PSS-78 salinity [UNES81] was calculated for each sample from the measured conductivity ratios. The difference between the initial vial of standard water and the next one run as an unknown was applied as a linear function of elapsed run time to the measured ratios. The corrected salinity data were then incorporated into the cruise database.

Data processing included double checking that the station, sample and box number had been correctly assigned, and reviewing the data and log files for operator comments. The salinity data were compared to CTD salinities and were used for shipboard sensor calibration.

Laboratory Temperature

The salinometer water bath temperature was maintained slightly higher than ambient laboratory air temperature at 21 °C. The ambient air temperature varied from 17 to 25 °C during the cruise.

There were occasional temperature spikes or drops that brought the room temperature outside of the acceptable range of the bath temperature. At these times, or when room temperature was not holding steady, an analysis run would be delayed until room temperature had again stabilized near bath temperature.

Standards

IAPSO Standard Seawater (SSW) Batch P-155 was used to standardize all runs. 132 bottles of SSW were used during U.S. GEOTRACES EPZT.

1.11. Oxygen Analysis

Equipment and Techniques

Dissolved oxygen analyses were performed with an SIO/STS/ODF-designed automated oxygen titrator using photometric end-point detection based on the absorption of 365nm wavelength ultra-violet light. The titration of the samples and the data logging were controlled by PC LabVIEW software developed by SIO/STS. Thiosulfate was dispensed by a Dosimat 876 buret driver fitted with a 1.0 mL buret. ODF used a whole-bottle modified-Winkler titration following the technique of Carpenter [Carp65] with modifications by Culberson *et al.* [Culb91], but with higher concentrations of potassium iodate standard (~0.012N) and thiosulfate solution (~55 gm/L). Pre-made liquid potassium iodate standards and reagent/distilled water blanks were run at least every other day, and when a change in reagents required it to account for the presence of oxidizing or reducing agents.

Sampling and Data Processing

Oxygen Measurements Made During GEOTRACES EPZT				
Cast Type	Number of Samples			
30-ODF	1341			
Lost Samples	1			
Total Oxygen Samples	1342			

Samples were collected for dissolved oxygen analyses soon after the rosette was brought on board. Two different 24-flask cases were alternated by cast to minimize flask calibration issues, if any. Using a Tygon and silicone drawing tube, nominal 125ml volume-calibrated iodine flasks were rinsed 3 times with minimal agitation, then filled and allowed to overflow for at least 3 flask volumes. The sample drawing temperatures were measured with an electronic resistance temperature detector (RTD) embedded in the drawing tube. These temperatures were used to calculate μ mol/kg concentrations, and as a diagnostic check of bottle integrity. Reagents (MnCl₂ then Nal/NaOH) were added to fix the oxygen before stoppering. 2g/L of sodium azide was added to the Nal/NaOH mixture for samples on stations 1-14 in order to counteract interference from high nitrite levels. The flasks were shaken twice (10-12 inversions each time) to assure thorough dispersion of the precipitate: once immediately after drawing, and then again after about 20 minutes.

The samples were analyzed within 18 hours of collection, and the data were incorporated into the cruise database.

Thiosulfate normalities were calculated from each standardization and corrected to 20°C. The thiosulfate normalities and blanks were monitored for possible drifting or problems when new reagents were used.

Bottle oxygen data were reviewed, ensuring station, cast, bottle number, flask, and draw temperature were entered properly. Any comments made during analysis were also reviewed, making certain that any anomalous actions were investigated and resolved.

After the data were uploaded to the database, oxygen was graphically compared with CTD oxygen and adjoining stations. Any suspicious-looking points were reviewed and comments were made regarding the final outcome of the investigation. These investigations and final data coding are reported in Appendix C.

Volumetric Calibration

Oxygen flask volumes were determined gravimetrically with degassed deionized water to determine flask volumes at ODF's chemistry laboratory. This was done once before using flasks for the first time and periodically thereafter when a suspect volume is detected. The volumetric flasks used in preparing standards were volume-calibrated by the same method, as was the 10 ml Dosimat buret used to dispense standard iodate solution.

Standards

Liquid potassium iodate standards were prepared in 6 liter batches and bottled in sterile glass bottles at ODF's chemistry laboratory prior to the expedition. The normality of the liquid standard was determined by calculation from weight. The standard was supplied by Alfa Aesar (lot B05N35) and has a reported purity of 99.4-100.4%. All other reagents were "reagent grade" and were tested for levels of oxidizing and reducing impurities prior to use.

1.12. Nutrient Analysis

Equipment and Techniques

Nutrient analyses (phosphate, silicate, nitrate+nitrite, nitrite) were performed on a Seal Analytical continuous-flow AutoAnalyzer 3 (AA3).

The analytical methods used are described by Gordon *et al.* [Gord92] Hager *et al.* [Hage68] and Atlas *et al.* [Atla71].

Silicate

Silicate was analyzed using the technique of Kirkwood *et al.* [Kirk89]. An acidic solution of ammonium molybdate was added to a seawater sample to produce silicomolybdic acid, which was then reduced to a silicomolybdenum blue complex following the addition of ascorbic acid. Oxalic acid was also added to impede PO_4 color development. The sample was passed through a flowcell and the absorbance measured at 660nm.

Reagents

Oxalic Acid (ACS Reagent Grade)

14.8g oxalic acid dissolved in DW and diluted to 1 liter volume. Stored at room temperature in a polypropylene bottle.

Ammonium Molybdate

14.8g Ammonium Molybdate Tetrahydrate dissolved in 1000ml dilute H₂SO₄*.

*(Dilute $H_2SO_4 = 54$ ml conc H_2SO_4 to a liter DW). Added 3 drops 15% ultra pure SDS per liter of solution.

Ascorbic Acid (ACS Reagent Grade)

Stock solution:

2.6g of ascorbic acid dissolved in DW and diluted to 1 liter volume. Refrigerated in a polypropylene bottle.

Nitrate + Nitrite

A modification of Armstrong *et al.* [Arms67] procedure was used for the analysis of nitrate and nitrite. For the nitrate analysis, the seawater sample was passed through a cadmium reduction column where nitrate was quantitatively reduced to nitrite. Sulfanilamide was introduced to the sample stream followed by N-(1-naphthyl)ethylenediamine dihydrochloride which coupled to form a red azo dye. The stream was then passed through a flowcell and the absorbance measured at 520nm. The same technique was employed for nitrite analysis, except the cadmium column was not present.

Reagents

Sulfanilamide (ACS Reagent Grade)

10g sulfanilamide dissolved in 1.2N HCl and brought to 1 liter volume. Added 5 drops of 40% surfynol 465/485 surfactant. Stored at room temperature in a dark polypropylene bottle.

N-(1-Naphthyl)-ethylenediamine dihydrochloride (N-1-N) (ACS Reagent Grade)

1g N-1-N dissolved in DW and brought to 1 liter volume. Added 2 drops 40% surfynol 465/485 surfactant. Stored at room temperature in a dark polypropylene bottle. Discarded if the solution turned dark reddish brown.

Imidazole Buffer (ACS Reagent Grade)

13.6g imidazole dissolved in ~3.8 liters DIW. Stirred for at least 30 minutes until completely dissolved. Added 60 ml of $NH_4CI + CuSO_4$ mix (see below). Added 4 drops 40% Surfynol 465/485 surfactant. Using a calibrated pH meter, adjusted to pH of 7.83-7.85 with 10% (1.2N) HCl (about 20-30ml of acid, depending on exact strength). Final solution brought to 4L with DIW. Stored at room temperature.

$NH_4CI + CuSO_4$ mix:

2g cupric sulfate dissolved in DIW, brought to 100 ml volume (2%). 250g ammonium chloride dissolved in DIW, brought to 1 liter volume. Added 5ml of 2% $CuSO_4$ solution to the NH_4Cl stock.

Note: 40% Surfynol 465/485 is 20% 465 plus 20% 485 in DIW. Prepared solution at least one day before use to stabilize.

Phosphate

Phosphate was analyzed using the Murphy and Riley [Murp62] technique. An acidic solution of ammonium molybdate and antimony potassium tartrate was added to the sample to produce phosphomolybdic acid, then reduced to phosphomolybdous acid (a blue compound) following the addition of ascorbic acid. The reaction product was heated to ~37°C to enhance color de velopment, then passed through a flowcell and the absorbance measured at 880nm.

Reagents

Antimony Potassium Tartrate stock

2.3g antimony potassium tartrate dissolved in DW and brought up to 100ml volume. Stable for one month.

Ammonium Molybdate (ACS Reagent Grade)

Add 64ml of concentrated H_2SO_4 to about 500ml DW and cool. Dissolve 6g of ammonium molybdate. Add 7ml stock antimony potassium tartrate. Dilute to 1 liter with DW. Store in a dark polypropylene bottle. Stable for one month. Must be colorless.

Ascorbic Acid (ACS Reagent Grade)

Dissolve 8g ascorbic in about 600ml DW. Add 45ml acetone and 1ml 15% ultra pure SDS. Dilute 1 liter volume. Stored in a dark polypropylene bottle and refrigerated. Stable for one week.

Sampling and Data Processing

Nutrient Measurements Made During GEOTRACES EPZT			
Cast Type	Number of Samples		
30L-ODF	1347		
GT-C + Super-GeoF	1738		
McL-Prof Niskins	204		
Underway (mid-GeoF + Th)	69		
Lost Samples	2		
Total Nutrient Samples	3360		

New pump tubes were installed before the cruise and after stations 15 and 24. Primary/secondary standards were made up at the beginning of the cruise and every 7-10 days thereafter. A total of 4 nitrite and 5 mixed (nitrate, phosphate, and silicate) standards were made over the course of the cruise. The first

was compared to standards brought from shore and each subsequent set was compared to the previous set to ensure continuity between standards. The cadmium column reduction efficiency was checked periodically and ranged between 95%-100% and was replaced when less than 96%.

Nutrient samples were drawn into 40 ml polypropylene screw-capped centrifuge tubes. The tubes and caps were cleaned with 10% HCl and rinsed once with de-ionized water and 2-3 times with sample before filling. Samples were kept in a refrigerator and analyzed within fifteen hours after sample collection. They were removed from the refrigerator about an hour before being analyzed, allowing sufficient time for all samples to reach room temperature. The centrifuge tubes fit directly onto the sampler.

Nutrients, reported in micromoles per kilogram, were converted from micromoles per Liter by dividing by sample density calculated at 1 atm pressure (0 db), *in situ* salinity, and an assumed lab temperature of 20°C.

Standards and Glassware

Primary standards for silicate (Na_2SiF_6), nitrate (KNO_3), nitrite ($NaNO_2$), and phosphate (KH_2PO_4) were obtained from Johnson Matthey Chemical Co. and/or Fisher Scientific. The supplier reports purities of >98%, 99.999%, 97%, and 99.999%. The standards were dried for approx 4hrs and allowed to cool down in a desiccator before they were weighed out to 0.01mg. The dry standard is diluted to 1L and the temperature of the solution was recorded. The exact weight, the temperature, and the calibrated volume of the flask were then used to calculate the concentration of the primary standard, and how much of this standard was needed for the desired concentration of secondary standard. The new standards were compared to the old before use. Standardizations were performed at the beginning of each group of analyses with working standards prepared prior to each run from a secondary. The secondary standards were prepared aboard ship by dilution from dry, pre-weighed primary standards. A set of 4 different standard concentrations (Table 1.12.0) were analyzed with each run of 12-30 samples to determine the deviation from linearity, if any, as a function of concentration for each nutrient.

std	N+N	PO4	SiO3	NO2	NO2
stations	all	all	all	1-15	16-36
1)	0.0	0.0	0	0.0	0.0
3)	15.50	1.2	60	1.50	0.50
5)	31.00	2.4	120	3.00	1.00
7)	46.50	3.6	180	4.50	1.50

Table 1.12.0 U.S. GEOTRACES EPZT Standard Concentrations (µmol/L)

All glass volumetric flasks were gravimetrically calibrated prior to the cruise. The primary standards were dried and weighed prior to the cruise. The exact weight was noted for future reference.

All the reagent solutions, primary and secondary standards were made with fresh distilled deionized water (DW).

Working standards were made up in low nutrient seawater (LNSW). LNSW was collected off the coast of California and filtered before use at sea during the first part of the cruise, through station 22. Additional LNSW was collected on the transit between Seattle and Manta, at position 27.47N 118.61W, and used for stations 23-36.

All data were initially reported in micromoles/Liter. NO3, PO4, and NO2 were reported to two decimal places, and SIL to one. Accuracy was based on the quality of the standards, and is listed with instrument precision in Table 1.12.1:

Nutrient	Accuracy	Precision
Reported	(µmol/L)	(µmol/L)
NO3	0.05	0.05
PO4	0.004	0.004
SIL	2-4	1
NO2	0.05	0.01

|--|

The detection limits for the methods/instrumentation are shown in Table 1.12.2:

Nutrient	Detection
Measured	Limit (µmol/L)
NO3+NO2	0.02
PO4	0.02
Sil	0.5
NO2	0.02

As is standard ODF practice, a deep calibration *check* sample was run with each set of samples and the data are tabulated below. This water was collected at 2000 meters on the second rinse station, during the transit along the coast of Peru, and poisoned with mercuric chloride.

Parameter	Concentration (µM)
NO ₃	40.03 ± 0.22
PO ₄	2.96 ± 0.03
SiO ₃	154.46 ± 1.16
NO_2	0.03 ± 0.01

Table 1.12.3 U.S. GEOTRACES EPZT deep check cruise-averaged data

Reference materials for nutrients in seawater (RMNS) were also used as a check sample run occasionally. The RMNS preparation, verification, and suggested protocol for use of the material are described by Aoyama *et al.* [Aoya06] [Aoya07] [Aoya08] and Sato *et al.* [Sato10]. RMNS batch BX was used on this cruise, with each bottle being used once or twice before being discarded and a new one opened. Data are tabulated below, along with the assigned values.

Parameter	Concentration (μ mol kg ⁻¹)	Assigned
NO ₃	44.27 ± 0.23	43
PO_4	3.04 ± 0.03	2.906
SiO ₃	146.59 ± 1.12	136
NO ₂	0.040 ± 0.004	0.034

Table 1.12.4 U.S. GEOTRACES EPZT cruise-averaged concentration of RMNS standard

References

Aoya06.

Aoyama, M., "Intercomparison Exercise for Reference Material for Nutrients in Seawater in a Seawater Matrix," *Technical Reports of the Meteorological Research Institute No.50*, p. 91, Tsukuba, Japan. (2006a).

Aoya08.

Aoyama, M., Barwell-Clark, J., Becker, S., Blum, M., Braga, E. S., Coverly, S. C., Czobik, E., Dahllof, I., Dai, M. H., Donnell, G. O., Engelke, C., Gong, G. C., Hong, G.-H., Hydes, D. J., Jin, M. M., Kasai, H., Kerouel, R., Kiyomono, Y., Knockaert, M., Kress, N., Krogslund, K. A., Kumagai, M., Leterme, S., Li, Y., Masuda, S., Miyao, T., Moutin, T., Murata, A., Nagai, N., Nausch, G., Ngirchechol, M. K., Nybakk, A., Ogawa, H., Ooijen, J. van, Ota, H., Pan, J. M., Payne, C., Pierre-Duplessix, O., Pujo-Pay, M., Raabe, T., Saito, K., Sato, K., Schmidt, C., Schuett, M., Shammon, T. M., Sun, J., Tanhua, T., White, L., Woodward, E. M. S., Worsfold, P., Yeats, P., Yoshimura, T., Youenou, A., and Zhang, J. Z., "2006 Inter-laboratory Comparison Study of a Reference Material for Nutrients in Seawater," *Technical Reports of the Meteorological Research Institute No. 58* (2008).

Aoya07.

Aoyama, M., Susan, B., Minhan, D., Hideshi, D., Louis, I. G., Kasai, H., Roger, K., Nurit, K., Doug, M., Murata, A., Nagai, N., Ogawa, H., Ota, H., Saito, H., Saito, K., Shimizu, T., Takano, H., Tsuda, A., Yokouchi, K., and Agnes, Y., "Recent Comparability of Oceanographic Nutrients Data: Results of a 2003 Intercomparison Exercise Using Reference Materials.," *Analytical Sciences*, 23: 115, pp. 1-1154 (2007).

Arms67.

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H., "The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment," *Deep-Sea Research*, 14, pp. 381-389 (1967).

Atla71.

Atlas, E. L., Hager, S. W., Gordon, L. I., and Park, P. K., "A Practical Manual for Use of the Technicon AutoAnalyzer® in Seawater Nutrient Analyses Revised," Technical Report 215, Reference 71-22, p. 49, Oregon State University, Department of Oceanography (1971).

Brow78.

Brown, N. L. and Morrison, G. K., "WHOI/Brown conductivity, temperature and depth microprofiler," Technical Report No. 78-23, Woods Hole Oceanographic Institution (1978).

Carp65.

Carpenter, J. H., "The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method," *Limnology and Oceanography*, 10, pp. 141-143 (1965).

Culb91.

Culberson, C. H., Knapp, G., Stalcup, M., Williams, R. T., and Zemlyak, F., "A comparison of methods for the determination of dissolved oxygen in seawater," Report WHPO 91-2, WOCE Hydrographic Programme Office (Aug 1991).

Gord92.

Gordon, L. I., Jennings, J. C., Jr., Ross, A. A., and Krest, J. M., "A suggested Protocol for Continuous Flow Automated Analysis of Seawater Nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study," Grp. Tech Rpt 92-1, OSU College of Oceanography Descr. Chem Oc. (1992).

Hage68.

Hager, S. W., Gordon, L. I., and Park, P. K., "A Practical Manual for Use of the Technicon AutoAnalyzer® in Seawater Nutrient Analyses.," Final report to Bureau of Commercial Fisheries, Contract 14-17-0001-1759., Oregon State University, Department of Oceanography, Reference No. 68-33. (1968).

Joyc94.

Joyce, T., ed. and Corry, C., ed., "Requirements for WOCE Hydrographic Programme Data

Reporting," Report WHPO 90-1, WOCE Report No. 67/91, pp. 52-55, WOCE Hydrographic Programme Office, Woods Hole, MA, USA (May 1994, Rev. 2). UNPUBLISHED MANUSCRIPT.

Kirk89.

Kirkwood, D. S., "Simultaneous determination of selected nutrients in seawater," *International Council for the Exploration of the Sea (ICES) Annual Report*, 29 (1989).

Mill82.

Millard, R. C., Jr., "CTD calibration and data processing techniques at WHOI using the practical salinity scale," Proc. Int. STD Conference and Workshop, p. 19, Mar. Tech. Soc., La Jolla, Ca. (1982).

Murp62.

Murphy, J. and Riley, J. P., "A modified single solution method for the determination of phosphate in natural waters," *Analytica Chimica Acta*, 27, pp. 31-36. (1962).

Owen85.

Owens, W. B. and Millard, R. C., Jr., "A new algorithm for CTD oxygen calibration," *Journ. of Am. Meteorological Soc.*, 15, p. 621 (1985).

Sato10.

Sato, K., Aoyama, M., and Becker, S., "RMNS as Calibration Standard Solution to Keep Comparability for Several Cruises in the World Ocean in 2000s.," *Aoyama, M., Dickson, A.G., Hydes, D.J., Murata, A., Oh, J.R., Roose, P., Woodward, E.M.S., (Eds.) Comparability of nutrients in the world's ocean.,* pp. 43-56, Tsukuba, JAPAN: MOTHER TANK (2010b).

UNES81.

UNESCO, "Background papers and supporting data on the Practical Salinity Scale, 1978," UNESCO Technical Papers in Marine Science, No. 37, p. 144 (1981).

Appendix A

U.S. GEOTRACES EPZT: CTD Temperature and Conductivity Corrections Summary

	ITS-90 Temperatu	Conductivity Coefficients			
Sta/	corT = tp1*	corP + t0	corC =	· c0	
Cast	tp1	tO	c2	c1	c0
001/02	-1.3432e-07	-0.001033	3.16731e-06	-3.16884e-04	0.005466
001/04	-1.3432e-07	-0.001025	3.16731e-06	-3.16884e-04	0.005466
001/06	-1.3432e-07	-0.001023	3.16731e-06	-3.16884e-04	0.005466
001/08	-1.3432e-07	-0.001021	3.16731e-06	-3.16884e-04	0.005466
001/10	-1.3432e-07	-0.001015	3.16731e-06	-3.16884e-04	0.005466
001/11	-1.3432e-07	-0.001013	3.16731e-06	-3.16884e-04	0.005466
001/13	-1.3432e-07	-0.001003	3.16731e-06	-3.16884e-04	0.005466
001/15	-1.3432e-07	-0.000998	3.16731e-06	-3.16884e-04	0.005466
002/02	-1.3432e-07	-0.000990	3.16731e-06	-3.16884e-04	0.005466
002/05	-1.3432e-07	-0.000986	3.16731e-06	-3.16884e-04	0.005466
003/05	-1.3432e-07	-0.000975	3.16731e-06	-3.16884e-04	0.005466
003/07	-1.3432e-07	-0.000971	3.16731e-06	-3.16884e-04	0.005466
004/02	-1.3432e-07	-0.000968	3.16731e-06	-3.16884e-04	0.005466
004/04	-1.3432e-07	-0.000963	3.16731e-06	-3.16884e-04	0.005466
005/02	-1.3432e-07	-0.000956	3.16731e-06	-3.16884e-04	0.005466
005/04	-1.3432e-07	-0.000950	3.16731e-06	-3.16884e-04	0.005466
005/06	-1.3432e-07	-0.000949	3.16731e-06	-3.16884e-04	0.005466
006/02	-1.3432e-07	-0.000934	3.16731e-06	-3.16884e-04	0.005466
007/02	-1.3432e-07	-0.000924	3.16731e-06	-3.16884e-04	0.005466
007/04	-1.3432e-07	-0.000916	3.16731e-06	-3.16884e-04	0.005466
007/06	-1.3432e-07	-0.000913	3.16731e-06	-3.16884e-04	0.005466
007/10	-1.3432e-07	-0.000905	3.16731e-06	-3.16884e-04	0.005466
007/12	-1.3432e-07	-0.000901	3.16731e-06	-3.16884e-04	0.005466
008/02	-1.3432e-07	-0.000891	3.16731e-06	-3.16884e-04	0.005466
009/02	-1.3432e-07	-0.000881	3.16731e-06	-3.16884e-04	0.005466
009/04	-1.3432e-07	-0.000876	3.16731e-06	-3.16884e-04	0.005466
009/06	-1.3432e-07	-0.000873	3.16731e-06	-3.16884e-04	0.005466
009/10	-1.3432e-07	-0.000864	3.16731e-06	-3.16884e-04	0.005466
010/02	-1.3432e-07	-0.000854	3.16731e-06	-3.16884e-04	0.005466
011/02	-1.3432e-07	-0.000844	3.16731e-06	-3.16884e-04	0.005466
011/04	-1.3432e-07	-0.000839	3.16731e-06	-3.16884e-04	0.005466
011/06	-1.3432e-07	-0.000836	3.16731e-06	-3.16884e-04	0.005466
011/08	-1.3432e-07	-0.000833	3.16731e-06	-3.16884e-04	0.005466
011/10	-1.3432e-07	-0.000830	3.16731e-06	-3.16884e-04	0.005466
011/11	-1.3432e-07	-0.000827	3.16731e-06	-3.16884e-04	0.005466
011/13	-1.3432e-07	-0.000821	3.16731e-06	-3.16884e-04	0.005466
011/15	-1.3432e-07	-0.000820	3.16731e-06	-3.16884e-04	0.005466
012/02	-1.3432e-07	-0.000809	3.16731e-06	-3.16884e-04	0.005466
013/02	-1.3432e-07	-0.000799	3.16731e-06	-3.16884e-04	0.005466
013/04	-1.3432e-07	-0.000794	3.16731e-06	-3.16884e-04	0.005466
013/06	-1.3432e-07	-0.000791	3.16731e-06	-3.16884e-04	0.005466
013/10	-1.3432e-07	-0.000783	3.16731e-06	-3.16884e-04	0.005466

O ()	ITS-90 Temperatu	re Coefficients	Condu	uctivity Coefficie	nts
Sta/	corI = tp1*c	corP + t0	corC =	$C2*C^{-} + C1*C +$	- c0
Cast	tp1	tO	c2	c1	c0
014/02	-1.3432e-07	-0.000772	3.16731e-06	-3.16884e-04	0.005466
015/02	-1.3432e-07	-0.000762	3.16731e-06	-3.16884e-04	0.005466
015/04	-1.3432e-07	-0.000757	3.16731e-06	-3.16884e-04	0.005466
015/06	-1.3432e-07	-0.000754	3.16731e-06	-3.16884e-04	0.005466
015/10	-1.3432e-07	-0.000746	3.16731e-06	-3.16884e-04	0.005466
016/02	-1.3432e-07	-0.000736	3 16731e-06	-3 16884e-04	0.005466
017/02	-1.3432e-07	-0.000725	3 16731e-06	-3 16884e-04	0.005466
017/02	-1.3432e-07	-0.000720	3.16731e-06	-3.16884e-04	0.005466
017/06	-1.3432e-07	-0.000717	3.16731e-06	-3.16884e-04	0.005466
017/09	-1.3432e-07	-0.000710	3.16731e-06	-3.16884e-04	0.005466
018/01	-1.3432e-07	-0.000697	3.16731e-06	-3.16884e-04	0.005466
018/04	-1.3432e-07	-0.000689	3.16731e-06	-3.16884e-04	0.005466
018/06	-1.3432e-07	-0.000686	3.16731e-06	-3.16884e-04	0.005466
018/08	-1.3432e-07	-0.000682	3.16731e-06	-3.16884e-04	0.005466
018/10	-1.3432e-07	-0.000679	3.16731e-06	-3.16884e-04	0.005466
018/11	-1.3432e-07	-0.000676	3.16731e-06	-3.16884e-04	0.005466
018/13	-1.3432e-07	-0.000670	3.16731e-06	-3.16884e-04	0.005466
018/17	-1.3432e-07	-0.000666	3.16731e-06	-3.16884e-04	0.005466
019/01	-1.3432e-07	-0.000656	3.16731e-06	-3.16884e-04	0.005466
020/02	-1.3432e-07	-0.000651	3.16731e-06	-3.16884e-04	0.005466
020/04	-1.3432e-07	-0.000645	3.16731e-06	-3.16884e-04	0.005466
020/06	-1.3432e-07	-0.000642	3.16731e-06	-3.16884e-04	0.005466
020/09	-1.3432e-07	-0.000635	3.16731e-06	-3.16884e-04	0.005466
021/02	-1.3432e-07	-0.000622	3.16731e-06	-3.16884e-04	0.005466
021/04	-1.3432e-07	-0.000617	3.16731e-06	-3.16884e-04	0.005466
021/06	-1.3432e-07	-0.000614	3.16731e-06	-3.16884e-04	0.005466
021/09	-1.3432e-07	-0.000607	3.16731e-06	-3.16884e-04	0.005466
022/02	-1.3432e-07	-0.000597	3.16731e-06	-3.16884e-04	0.005466
023/01	-1.3432e-07	-0 000588	3 16731e-06	-3 16884e-04	0 005466
023/04	-1 3432e-07	-0.000581	3 16731e-06	-3 16884e-04	0.005466
023/06	-1 3432e-07	-0.000577	3 16731e-06	-3 16884e-04	0.005466
023/10	-1 3432e-07	-0.000568	3 16731e-06	-3 16884e-04	0.005466
020/10	-1 3432e-07	-0.000558	3 16731e-06	-3 16884e-04	0.005466
024/02	-1 3/320-07	-0.000548	3 167310-06	-3 1688/0-0/	0.005466
025/02	-1.34326-07	-0.000543	3 167310-06	-3.168846-04	0.005466
025/04	-1.34326-07	-0.000540	3 167310-06	-3.168846-04	0.005466
025/00	-1.34326-07	-0.000540	3 167310-06	-3.168846-04	0.005466
025/09	-1.3432e-07	-0.000518	3.16731e-06	-3.16884e-04	0.005466
5_0,0_		0.000010		5	0.000.00
026/07	-1.3432e-07	-0.000509	3.16731e-06	-3.16884e-04	0.005466
026/08	-1.3432e-07	-0.000507	3.16731e-06	-3.16884e-04	0.005466
026/10	-1.3432e-07	-0.000503	3.16731e-06	-3.16884e-04	0.005466
026/12	-1.3432e-07	-0.000500	3.16731e-06	-3.16884e-04	0.005466
026/13	-1.3432e-07	-0.000497	3.16731e-06	-3.16884e-04	0.005466
026/15	-1.3432e-07	-0.000492	3.16731e-06	-3.16884e-04	0.005466
026/17	-1.3432e-07	-0.000490	3.16731e-06	-3.16884e-04	0.005466

	ITS-90 Temperate	ure Coefficients	Conductivity Coefficients				
Sta/	corT = tp1*	corP + t0	corC =	$c2*C^2 + c1*C +$	· c0		
Cast	tp1	tO	c2	c1	c0		
027/02	-1.3432e-07	-0.000481	3.16731e-06	-3.16884e-04	0.005466		
028/02	-1.3432e-07	-0.000471	3.16731e-06	-3.16884e-04	0.005466		
028/04	-1.3432e-07	-0.000466	3.16731e-06	-3.16884e-04	0.005466		
028/06	-1.3432e-07	-0.000463	3.16731e-06	-3.16884e-04	0.005466		
028/09	-1.3432e-07	-0.000455	3.16731e-06	-3.16884e-04	0.005466		
029/02	-1.3432e-07	-0.000445	3.16731e-06	-3.16884e-04	0.005466		
030/02	-1.3432e-07	-0.000438	3.16731e-06	-3.16884e-04	0.005466		
030/04	-1.3432e-07	-0.000432	3.16731e-06	-3.16884e-04	0.005466		
030/06	-1.3432e-07	-0.000429	3.16731e-06	-3.16884e-04	0.005466		
030/11	-1.3432e-07	-0.000418	3.16731e-06	-3.16884e-04	0.005466		
031/02	-1.3432e-07	-0.000407	3.16731e-06	-3.16884e-04	0.005466		
032/02	-1.3432e-07	-0.000392	3.16731e-06	-3.16884e-04	0.005466		
032/04	-1.3432e-07	-0.000387	3.16731e-06	-3.16884e-04	0.005466		
032/06	-1.3432e-07	-0.000383	3.16731e-06	-3.16884e-04	0.005466		
032/10	-1.3432e-07	-0.000374	3.16731e-06	-3.16884e-04	0.005466		
033/02	-1.3432e-07	-0.000365	3.16731e-06	-3.16884e-04	0.005466		
034/02	-1.3432e-07	-0.000355	3.16731e-06	-3.16884e-04	0.005466		
034/06	-1.3432e-07	-0.000346	3.16731e-06	-3.16884e-04	0.005466		
035/02	-1.3432e-07	-0.000335	3.16731e-06	-3.16884e-04	0.005466		
036/02	-1.3432e-07	-0.000325	3.16731e-06	-3.16884e-04	0.005466		
036/04	-1.3432e-07	-0.000319	3.16731e-06	-3.16884e-04	0.005466		
036/06	-1.3432e-07	-0.000316	3.16731e-06	-3.16884e-04	0.005466		
036/08	-1.3432e-07	-0.000311	3.16731e-06	-3.16884e-04	0.005466		
036/10	-1.3432e-07	-0.000308	3.16731e-06	-3.16884e-04	0.005466		
036/11	-1.3432e-07	-0.000305	3.16731e-06	-3.16884e-04	0.005466		
036/13	-1.3432e-07	-0.000299	3.16731e-06	-3.16884e-04	0.005466		
036/15	-1.3432e-07	-0.000298	3.16731e-06	-3.16884e-04	0.005466		

Appendix B

Summary of U.S. GEOTRACES EPZT CTD Oxygen Time Constants

Pressure	Temperature		Temperature		Pressure	O ₂ Gradient	Velocity	Thermal
Hysteresis ($\tau_{\rm h}$)	$Long(\tau_{TI})$	Short(τ_{Ts})	Gradient (τ_{p})	$(au_{ m og})$	$(\tau_{\sf dP})$	Diffusion (τ_{dT})		
50.0	300.0	4.0	0.50	8.00	200.00	300.0		

U.S. GEOTRACES EPZT: Conversion Equation Coefficients for CTD Oxygen (refer to Equation 1.7.4.0)

Sta/	O _c Slope	Offset	P _h coeff	T _I coeff	T _s coeff	P _l coeff	$\frac{dO_c}{dt}$ coeff	$\frac{dP}{dt}$ coeff	T _{dT} coeff
Cast	(C ₁)	(C ₃)	(C ₂)	(C ₄)	(C ₅)	(c ₆)	(C ₇)	(C ₈)	(C ₉)
001/02	5.694e-04	-0.2394	0.0829	-3.301e-03	2.091e-03	-6.305e-03	-5.804e-04	-6.305e-03	-7.688e-03
001/04	1.386e-04	-0.0590	0.8495	-1.532e-02	9.480e-02	1.482e-01	3.837e-03	1.482e-01	3.212e-04
001/06	5.094e-04	-0.2122	0.0781	-1.071e-03	6.226e-03	5.078e-03	2.040e-04	5.078e-03	-1.735e-03
001/08	7.939e-04	-0.3339	0.1395	5.691e-03	-2.518e-02	-3.083e-02	1.428e-04	-3.083e-02	-1.388e-03
001/10	5.174e-04	-0.2188	0.3963	-6.243e-03	1.076e-02	3.509e-02	1.386e-03	3.509e-02	-2.368e-03
001/11	5.721e-04	-0.2382	-0.0301	5.412e-04	-1.586e-03	-1.870e-02	-1.113e-04	-1.870e-02	-3.167e-03
001/13	5.579e-04	-0.2351	0.3338	-3.281e-03	4.177e-03	-2.296e-03	2.171e-04	-2.296e-03	-6.651e-03
001/15	5.621e-04	-0.2319	-0.0919	1.063e-03	-8.794e-04	-2.083e-02	5.053e-04	-2.083e-02	-5.111e-03
002/02	1.862e-04	-0.0788	1.3060	1.267e-01	-5.549e-02	-1.515e+00	3.008e-04	-1.515e+00	1.133e-02
002/05	2.138e-04	-0.0877	-0.3517	-1.244e-01	1.905e-01	1.715e-01	-3.367e-03	1.715e-01	-1.484e-01
003/05	4.026e-04	-0.1713	4.1906	-7.509e-02	1.023e-01	1.736e+00	3.516e-04	1.736e+00	-1.111e-01
003/07	2.784e-05	-0.0110	-0.7538	-1.625e-01	3.442e-01	2.155e-01	-7.104e-03	2.155e-01	-3.904e-01
004/02	4.438e-04	-0.1879	0.3955	2.065e-02	-6.393e-03	-2.790e-01	5.891e-04	-2.790e-01	1.831e-03
004/04	1.564e-03	-0.6594	0.1177	-3.512e-02	-2.489e-02	1.289e-01	8.150e-03	1.289e-01	-4.325e-02
005/02	2.138e-04	-0.0898	0.0624	1.550e-02	4.115e-02	-3.891e-01	2.171e-03	-3.891e-01	-2.309e-02
005/04	7.763e-05	-0.0326	0.5537	-1.479e-03	1.156e-01	-1.494e-01	-6.853e-03	-1.494e-01	-1.284e-02
005/06	5.669e-04	-0.2391	0.1398	-1.853e-02	1.831e-02	-9.871e-03	-3.051e-03	-9.871e-03	-2.656e-02
006/02	5.504e-04	-0.2326	0.2262	5.157e-04	1.418e-03	7.787e-03	2.884e-04	7.787e-03	-3.380e-04
007/02	5.784e-04	-0.2406	-0.0518	-1.970e-03	1.033e-03	-1.309e-02	5.899e-05	-1.309e-02	-6.729e-03
007/04	3.850e-04	-0.1633	0.3341	7.134e-04	1.990e-02	-7.662e-02	-1.745e-03	-7.662e-02	-9.061e-03
007/06	6.689e-04	-0.2821	0.1572	4.415e-04	-9.048e-03	2.367e-02	1.550e-03	2.367e-02	3.106e-03
007/10	5.893e-04	-0.2451	-0.0168	4.414e-04	-2.379e-03	-1.113e-02	1.821e-04	-1.113e-02	-2.070e-03
007/12	5.893e-04	-0.2451	-0.0168	4.414e-04	-2.379e-03	-1.113e-02	1.821e-04	-1.113e-02	-2.070e-03
008/02	5.534e-04	-0.2338	0.3439	-6.290e-03	7.982e-03	2.823e-02	-1.893e-03	2.823e-02	-4.854e-03
009/02	5.593e-04	-0.2367	0.2584	-2.176e-04	1.426e-03	4.705e-03	-5.177e-04	4.705e-03	-8.516e-04
009/04	5.054e-04	-0.2179	0.6881	-2.738e-03	9.255e-03	4.841e-02	-1.665e-03	4.841e-02	1.749e-03
009/06	6.116e-04	-0.2612	0.4527	-3.181e-03	-1.363e-04	5.276e-02	1.152e-03	5.276e-02	6.530e-04
009/10	5.798e-04	-0.2422	-0.0424	-3.188e-03	2.347e-03	-1.067e-02	-3.361e-03	-1.067e-02	-7.796e-03
010/02	6.028e-04	-0.2583	0.4603	-3.389e-03	8.865e-04	5.463e-02	1.148e-04	5.463e-02	1.581e-03
011/02	5.578e-04	-0.2379	0.3878	4.342e-04	8.513e-04	1.473e-02	9.167e-04	1.473e-02	7.301e-04
011/04	4.964e-04	-0.2122	0.5323	6.136e-04	6.257e-03	6.788e-03	7.566e-04	6.788e-03	9.640e-05
011/06	5.781e-04	-0.2523	0.8736	2.434e-04	-1.842e-04	1.662e-02	1.252e-03	1.662e-02	-8.045e-04
011/08	5.715e-04	-0.2398	-0.0133	-3.376e-03	3.403e-03	-7.639e-03	9.019e-05	-7.639e-03	-1.008e-02
011/10	5.765e-04	-0.2437	0.1277	-4.393e-04	1.860e-05	5.714e-03	-2.312e-03	5.714e-03	-1.127e-03
011/11	7.149e-04	-0.2947	-0.2886	1.328e-03	-1.234e-02	1.467e-02	9.579e-04	1.467e-02	5.521e-03
011/13	4.974e-04	-0.2248	2.0902	1.810e-03	5.711e-03	3.406e-02	-6.059e-04	3.406e-02	2.021e-03

Sta/	O _c Slope	Offset	P _h coeff	T _I coeff	T _s coeff	P _l coeff	$\frac{dO_c}{dt}$ coeff	$\frac{dP}{dt}$ coeff	T _{dT} coeff
Cast	(C ₁)	(C ₃)	(C ₂)	(C ₄)	(C ₅)	(C ₆)	(C ₇)	(C ₈)	(C ₉)
011/15	5.753e-04	-0.2406	-0.0295	-1.205e-03	9.486e-04	-9.543e-03	-8.554e-06	-9.543e-03	-5.299e-03
012/02	4.692e-04	-0.2022	0.7270	5.048e-04	9.002e-03	2.014e-02	-2.628e-03	2.014e-02	1.753e-03
013/02	5.314e-04	-0.2266	0.3904	1.742e-03	1.912e-03	6.904e-03	2.832e-04	6.904e-03	9.639e-04
013/04	6.104e-04	-0.2562	0.1584	-5.973e-04	-2.585e-03	3.093e-02	5.757e-04	3.093e-02	2.867e-03
013/06	5.341e-04	-0.2275	0.6563	8.742e-04	2.525e-03	3.900e-02	1.174e-03	3.900e-02	4.344e-03
013/10	5.852e-04	-0.2446	-0.0137	1.043e-03	-1.920e-03	-9.258e-03	2.561e-04	-9.258e-03	-1.965e-03
014/02	5.823e-04	-0.2483	0.5572	-3.700e-03	3.200e-03	3.997e-02	-1.455e-03	3.997e-02	1.362e-04
015/02	5.729e-04	-0.2377	-0.0300	4.419e-04	-2.634e-04	-1.275e-03	2.991e-04	-1.275e-03	-1.055e-03
015/04	5.487e-04	-0.2250	0.1070	-5.021e-04	2.287e-03	8.379e-03	-1.164e-03	8.379e-03	-6.891e-05
015/06	5.471e-04	-0.2364	0.7350	-2.177e-04	2.557e-03	2.579e-02	3.100e-05	2.579e-02	1.641e-03
015/10	5.627e-04	-0.2303	-0.0833	6.467e-04	2.030e-04	-1.141e-02	-1.298e-03	-1.141e-02	-2.082e-03
016/02	5.320e-04	-0.2206	0.1629	-3.851e-04	3.606e-03	8.515e-04	-8.814e-04	8.515e-04	-1.043e-03
017/02	5.649e-04	-0.2405	0.3284	2.262e-04	7.248e-04	1.280e-03	6.489e-04	1.280e-03	-1.576e-03
017/04	5.552e-04	-0.2313	0.1093	1.336e-03	-9.129e-07	1.171e-02	5.517e-04	1.171e-02	2.274e-03
017/06	5.386e-04	-0.2263	0.2743	-8.101e-04	3.574e-03	8.904e-03	-9.493e-04	8.904e-03	3.183e-04
017/09	5.618e-04	-0.2327	-0.0823	9.934e-04	-1.134e-04	-1.079e-02	1.205e-03	-1.079e-02	-1.905e-03
018/01	5.643e-04	-0.2341	-0.1295	1.689e-03	-1.064e-03	-1.295e-02	8.972e-04	-1.295e-02	-1.354e-03
018/04	5.365e-04	-0.2204	-0.1303	7.590e-04	2.057e-03	-5.099e-03	9.156e-04	-5.099e-03	-1.237e-03
018/06	5.793e-04	-0.2361	-0.1651	5.963e-04	-1.023e-03	8.679e-03	1.376e-03	8.679e-03	1.155e-04
018/08	5.798e-04	-0.2483	0.1682	3.730e-03	-3.855e-03	3.552e-03	3.783e-03	3.552e-03	2.748e-03
018/10	6.003e-04	-0.2605	0.0543	2.358e-03	-3.713e-03	1.202e-03	1.360e-03	1.202e-03	1.447e-03
018/11	6.180e-04	-0.2765	0.7126	9.656e-04	-3.105e-03	2.269e-02	-1.376e-04	2.269e-02	2.074e-03
018/13	9.599e-04	-0.4848	2.7893	-1.713e-02	-1.645e-03	1.993e-01	-4.235e-03	1.993e-01	4.368e-03
018/17	5.984e-04	-0.2577	-0.1102	3.046e-03	-4.423e-03	-5.063e-03	1.990e-03	-5.063e-03	1.526e-03
019/01	5.875e-04	-0.2610	0.4998	1.815e-03	-1.896e-03	6.225e-03	1.225e-03	6.225e-03	4.855e-04
020/02	5.999e-04	-0.2605	0.1528	-5.651e-04	-8.961e-04	1.224e-03	-2.582e-03	1.224e-03	-1.775e-03
020/04	5.607e-04	-0.2387	0.0783	1.385e-03	9.749e-05	-6.153e-03	4.286e-04	-6.153e-03	-1.489e-03
020/06	5.914e-04	-0.2524	0.4669	1.112e-04	-9.647e-04	2.288e-02	-3.373e-04	2.288e-02	1.733e-03
020/09	6.087e-04	-0.2690	0.1414	-2.572e-04	-1.463e-03	-3.638e-03	-1.352e-03	-3.638e-03	-2.242e-03
021/02	5.742e-04	-0.2440	0.1636	1.145e-03	-9.007e-04	-1.026e-03	2.859e-04	-1.026e-03	-3.824e-04
021/04	5.824e-04	-0.2461	0.0683	2.575e-03	-2.711e-03	-6.485e-03	7.715e-04	-6.485e-03	-3.232e-04
021/06	5.778e-04	-0.2413	0.0719	2.076e-03	-2.026e-03	-5.561e-03	-2.569e-04	-5.561e-03	-4.398e-04
021/09	5.560e-04	-0.2292	-0.1582	-1.625e-03	2.932e-03	-1.016e-02	-2.203e-03	-1.016e-02	-5.030e-03
022/02	6.058e-04	-0.2659	0.7151	-4.698e-03	3.281e-03	3.689e-02	-1.540e-03	3.689e-02	-2.159e-03
023/01	5.891e-04	-0.2513	-0.0006	2.159e-03	-2.824e-03	-6.809e-03	5.690e-04	-6.809e-03	5.867e-04
023/04	5.918e-04	-0.2548	0.2920	1.056e-03	-1.614e-03	5.722e-03	2.169e-05	5.722e-03	-1.119e-04
023/06	5.794e-04	-0.2462	0.2358	1.646e-03	-1.582e-03	7.133e-03	2.841e-04	7.133e-03	9.356e-04
023/10	5.508e-04	-0.2266	-0.1739	1.964e-03	-2.482e-04	-1.270e-02	6.855e-04	-1.270e-02	-1.475e-03
024/02	5.459e-04	-0.2293	0.0343	1.775e-03	5.386e-04	1.691e-03	1.838e-03	1.691e-03	3.001e-04
025/02	5.890e-04	-0.2557	0.3412	1.877e-03	-2.209e-03	5.518e-04	7.568e-04	5.518e-04	1.369e-04
025/04	6.186e-04	-0.2706	0.4828	1.462e-04	-2.251e-03	2.256e-02	-5.177e-05	2.256e-02	4.922e-04
025/06	6.413e-04	-0.2809	0.4660	5.626e-04	-4.107e-03	3.379e-02	1.186e-03	3.379e-02	2.202e-03
025/09	5.800e-04	-0.2463	-0.1377	1.017e-03	-1.033e-03	-1.345e-02	-1.512e-03	-1.345e-02	-1.671e-03
026/02	5.766e-04	-0.2431	-0.0664	2.642e-03	-2.439e-03	-4.974e-03	1.192e-03	-4.974e-03	6.927e-04
026/07	5.830e-04	-0.2484	0.1120	2.446e-03	-2.592e-03	2.828e-03	3.632e-04	2.828e-03	1.001e-03
026/08	6.323e-04	-0.2767	0.5617	1.487e-03	-4.303e-03	1.744e-02	1.146e-04	1.744e-02	1.358e-03
026/10	5.948e-04	-0.2567	-0.0749	2.493e-03	-3.272e-03	-9.824e-03	2.378e-04	-9.824e-03	4.133e-04
026/12	5.735e-04	-0.2391	0.0605	1.677e-03	-1.280e-03	-1.991e-03	1.544e-04	-1.991e-03	8.202e-05

Sta/	O _c Slope	Offset	P _h coeff	T _I coeff	T _s coeff	P _l coeff	$\frac{dO_c}{dt}$ coeff	$\frac{dP}{dt}$ coeff	T _{dT} coeff
Cast	(c ₁)	(C ₃)	(C ₂)	(C ₄)	(c ₅)	(c ₆)	(C ₇)	(C ₈)	(C ₉)
026/13	5.904e-04	-0.2520	0.0749	2.187e-03	-2.715e-03	3.961e-03	1.191e-03	3.961e-03	1.108e-03
026/15	5.906e-04	-0.1768	-4.3759	2.260e-03	-5.312e-03	-8.320e-02	-1.108e-03	-8.320e-02	-2.488e-03
026/17	5.795e-04	-0.2462	-0.1315	2.094e-03	-2.052e-03	-1.195e-02	-1.434e-04	-1.195e-02	3.862e-05
027/02	5.937e-04	-0.2594	0.5650	-6.626e-04	1.653e-04	2.225e-02	-1.024e-03	2.225e-02	-5.773e-05
028/02	5.694e-04	-0.2390	-0.1920	-5.887e-04	1.086e-03	-9.023e-03	-2.137e-03	-9.023e-03	-2.928e-03
028/04	5.498e-04	-0.2271	-0.2206	8.851e-04	8.501e-04	-6.915e-03	4.154e-04	-6.915e-03	-1.215e-03
028/06	5.644e-04	-0.2333	0.2501	-1.162e-03	2.066e-03	-2.577e-06	-1.864e-03	-2.577e-06	-2.310e-03
028/09	5.633e-04	-0.2348	-0.2010	-1.647e-03	2.581e-03	-1.441e-02	-4.995e-03	-1.441e-02	-4.063e-03
029/02	5.639e-04	-0.2465	1.1038	-2.880e-03	4.455e-03	2.786e-02	-3.476e-03	2.786e-02	-2.472e-03
030/02	4.946e-04	-0.1828	-0.3973	3.533e-03	1.097e-03	-1.668e-02	6.838e-04	-1.668e-02	1.752e-03
030/04	5.613e-04	-0.2321	-0.1783	2.462e-03	-1.549e-03	6.418e-03	2.739e-03	6.418e-03	1.896e-03
030/06	5.545e-04	-0.2276	0.0604	1.045e-03	3.576e-04	1.889e-04	-1.929e-03	1.889e-04	-5.262e-05
030/11	5.486e-04	-0.2210	-0.2209	2.606e-03	-1.098e-03	-1.449e-02	-3.532e-04	-1.449e-02	4.647e-04
031/02	5.196e-04	-0.2064	-0.3926	1.642e-03	1.671e-03	-4.239e-03	3.014e-04	-4.239e-03	4.500e-04
032/02	5.561e-04	-0.2355	0.6105	1.039e-03	6.227e-04	5.732e-03	-2.678e-03	5.732e-03	-2.523e-04
032/04	5.317e-04	-0.2074	0.1827	9.579e-04	1.609e-03	4.277e-03	2.274e-04	4.277e-03	-7.378e-04
032/06	5.599e-04	-0.2309	-0.1092	9.855e-04	-9.404e-05	-3.461e-04	-1.063e-03	-3.461e-04	8.894e-04
032/10	5.788e-04	-0.2442	-0.0927	3.910e-04	-2.204e-04	-1.803e-02	-2.590e-03	-1.803e-02	-2.391e-03
033/02	5.583e-04	-0.2293	-0.1000	1.656e-03	-5.234e-04	-2.554e-03	1.206e-03	-2.554e-03	-2.987e-04
034/02	5.530e-04	-0.2277	-0.0700	2.738e-03	-1.300e-03	-5.729e-03	9.192e-04	-5.729e-03	2.875e-04
034/06	5.566e-04	-0.2289	-0.2150	2.175e-03	-1.062e-03	-1.910e-02	-9.893e-04	-1.910e-02	-6.552e-04
035/02	5.773e-04	-0.2450	-0.0634	1.709e-03	-1.513e-03	7.466e-04	9.330e-04	7.466e-04	6.923e-04
036/02	5.964e-04	-0.2638	0.2837	1.948e-03	-2.663e-03	-1.736e-03	-1.107e-03	-1.736e-03	6.160e-04
036/04	5.678e-04	-0.2409	-0.0434	1.229e-03	-5.392e-04	-2.308e-04	-3.974e-04	-2.308e-04	4.332e-05
036/06	5.632e-04	-0.2374	-0.0224	1.588e-03	-7.808e-04	-4.304e-03	-1.336e-03	-4.304e-03	4.455e-04
036/08	6.150e-04	-0.2769	-0.1035	1.542e-03	-3.061e-03	-1.868e-02	-2.723e-03	-1.868e-02	-7.531e-04
036/10	6.013e-04	-0.2632	0.0572	8.690e-04	-1.831e-03	-2.105e-03	-3.073e-03	-2.105e-03	-2.660e-04
036/11	5.051e-04	-0.1900	-0.2341	1.051e-03	2.841e-03	-8.924e-03	-3.752e-04	-8.924e-03	-9.357e-04
036/13	8.913e-04	-0.4092	0.6793	-9.795e-03	-4.005e-03	1.353e-01	-2.563e-03	1.353e-01	-4.083e-04
036/15	5.439e-04	-0.2182	-0.2216	8.170e-04	8.672e-04	-2.154e-02	-2.478e-03	-2.154e-02	-1.896e-03

Appendix C

U.S. GEOTRACES EPZT: Bottle Quality Comments

Comments from the Sample Logs and the results of SIO/STS's data investigations are included in this report. Units stated in these comments are degrees Celsius for temperature, micromoles per kilogram for oxygen and micromoles per liter for Silicate, Nitrate, Nitrite, and Phosphate. The sample number is the cast number times 100 plus the bottle number. Investigation of data may include comparison of bottle salinity and oxygen data with CTD data, review of data plots of the station profile and adjoining stations, and re-reading of charts (i.e. nutrients).

Comments from other analysts, submitted through the shipboard data website with their sample values, are also included in this table.

Quality codes in this table are from the coding scheme developed for the World Ocean Circulation Experiment Hydrographic Programme (WHP) [Joyc94]. These flags can also be found at *http://cchdo.ucsd.edu/woce_flags.html*.

In addition, non-standard quality codes "A" and "B" were used for several properties where the analysts desired to mark them as "Above" or "Below" detection limits for the analysis methods used.

Statior	n Sample	9	Quality	
/Cast	No.	Property	Code	Comment
1/1	101	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	102	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	103	bottle	2	Spigot leaking.
1/1	103	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	104	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	105	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	106	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	107	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	108	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	109	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)

Station	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
1/1	110	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	111	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	112	salt	2	Value matches duplicate. (Analyst: Salt 12 thimble came out with cap. Probable contamination.)
1/1	113	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	114	no2	4	Other nutrient values higher than expected, no analytical problems noted. Salt fine, perhaps mis-sampled for nutrients only.
1/1	114	no3	4	Value higher than expected, no analytical problems noted. Salt fine, perhaps mis-sampled for nutrients only.
1/1	114	po4	4	Value higher than expected, no analytical problems noted. Salt fine, perhaps mis-sampled for nutrients only.
1/1	114	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	114	sio3	4	Value higher than expected, no analytical problems noted. Salt fine, perhaps mis-sampled for nutrients only.
1/1	115	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	116	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	117	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	118	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	119	dfe2_mops	s 5	sample lost due to broken tubing
1/1	119	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	120	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	121	dfe2_mops	s 5	sample lost due to broken tubing
1/1	121	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	122	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)
1/1	123	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within 0.004 of each other. (Analyst: All samples appear to have been collected in random order.)

Statior	n Sample	е	Quality	
/Cast	No.	Property	Code	Comment
1/1	124	dfe2 mops	5	sample lost due to broken tubing
1/1	124	salt	2	Salinity values for cast are ok: all samples are deep, and all dups within
				0.004 of each other. (Analyst: All samples appear to have been collected
				in random order.)
1/2	201	salt	2	Value matches CTD data. (Analyst: thimble popped out with cap.
				Reading suspect.)
1/2	207	bottle	2	Niskin leaky.
1/2	208	bottle	2	Niskin leaky.
1/5	501	dfe2_mops	5	No data (ND) reported
1/5	501	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 1 rim chipped and
				rough. Seal may have been compromised.)
1/5	507	bottle	2	Bottle hanging but full when recovered.
1/6	601	bottle	2	Niskin vent open.
1/6	604	salt	2	Value matches CTD data. (Analyst: Salt 28 thimble came out with cap.
				Readings a bit farther apart than normal.)
1/6	608	bottle	2	Niskin leaky.
1/8	802	salt	2	Value matches CTD data. (Analyst: Salt 2 - Readings erratic with initial
				jump. Seems high.)
1/8	807	salt	2	Value matches CTD data. (Analyst: Salt 7 - Readings kept climbing.
				Probably contamination. Source not clear.)
1/8	809	bottle	2	Niskin leaky.
1/10	1001	salt	2	Values match each other (duplicates) and CTD data. (Analyst: Salts 25
				and 26 exhibit the same pattern of climbing readings. Lots of particulate
				matter in sample.)
1/10	1002	salt	2	Values match each other (duplicates) and CTD data. (Analyst: Salts 25
				and 26 exhibit the same pattern of climbing readings. Lots of particulate
				matter in sample.)
1/10	1005	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 29 - Readings
4/40	4007	h attla	0	kept increasing. High particle count in sample.)
1/10	1007	bottle	2	Niskin leaky.
1/10	1008	DOTTIE	2	NISKIN leaky.
1/10	1009	San	Z	value matches duplicate and CTD data. (Analyst. Sait 33 - minible
1/10	1012	bottlo	2	Nickin looky
1/10	1100	bottle	2	Niskin tea pot sealed leaky
1/11	1109	02	2	Value low does not match duplicate or CTD data. No analytical errors
	1103	02	5	noted
1/13	1302	bottle	2	Niskin leaky
1/13	1304	salt	2	Deep cast, value is within 0.001 of CTD data. (Analyst: Salt 16 - Thimble
.,	1001	oun	-	popped out while cap was being removed. Probable contamination.
				Should be closer to salt 15 in value)
1/13	1309	bottle	2	Niskin top not sealed, leaky.
1/14	1407	dfe2 mops	5	sample lost due to broken tubing
1/14	1409	dfe2 mops	5	sample lost due to broken tubing
1/14	1411	dfe2 mops	5	sample lost due to broken tubing
1/14	1415	dfe2_mops	5	sample lost due to broken tubing
1/14	1419	dfe2_mops	5	sample lost due to broken tubing
1/14	1421	dfe2_mops	5	sample lost due to broken tubing
1/14	1423	dfe2_mops	5	sample lost due to broken tubing
1/15	1504	o2	3	deep bottle o2 appears to be slightly high (1.5 umol/kg) vs nearby bottles
				and CTD; code questionable.

Station	n Sampl	e	Quality	
/Cast	No.	Property	Code	Comment
1/15	1508	bottle	2	Niskin leaky.
1/15	1509	salt	2	Deep cast, value within 0.002 of CTD data. (Analyst: Salt 9 - thimble
				came out and water poured from thimble down bottle. Contaminated.
				Watched 5 samples increase each read. Suspect actual reading should
				be closer to 1.98428)
1/25	2525	bottle	2	CTD data for Surface FISH sample from 001/04 (30-ODF) down-cast.
2/1	101	bottle	2	Leaking from spigot.
2/1	102	dfe2_syr	6	Reported as GT No. 2252, but assume it is 2253.
2/1	105	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 5 - Thimble
				loosened by cap threads. Very wet. Possible contamination.)
2/1	106	dfe2_syr	2	Duplicate values reported, used first value
2/1	110	dfe2_syr	2	Duplicate values reported, used first value
2/1	113	dfe	2	Note: Calibrated for higher concentrations
2/1	114	dfe2_syr	6	Reported as GT No. 2559, corrected to 2259
2/1	117	dfe	2	Note: Calibrated for higher concentrations
2/1	118	dfe2_syr	2	Duplicate values reported, used first value
2/1	121	bottle	2	Air leaking from top ball.
2/1	121	dfe	2	Note: Calibrated for higher concentrations
2/1	122	dfe2_syr	2	Duplicate values reported, used first value
2/2	204	bottle	2	Niskin leaky.
2/2	208	bottle	2	Niskin leaky.
2/2	211	sbe35rt	3	SBE35RT +0.07/-0.02 vs CTDT1/CTDT2; unstable SBE35RT reading in
				a gradient.
2/5	501	bottle	4	Bottle did not close: 3 NO-confirms, with carousel repositioned between
				each attempt.
2/5	502	bottle	4	Bottle did not close: 3 NO-confirms, with carousel repositioned between
				each attempt.
2/5	503	bottle	4	Bottle did not close: 3 NO-confirms, with carousel repositioned between
0/5	504			each attempt.
2/5	504	bottle	4	Bottle did not close: 3 NO-confirms, with carousel repositioned between
0/5	540	1	0	each attempt.
2/5	512	bottle	9	Bottle closed, but no samples collected.
2/25	2525	DOTTIE	2	CID data for Surface FISH sample from 002/05 (30-ODF) up-cast.
2/25	2020	die	2	Note: Calibrated for higher concentrations
3/1	103		2	Note. Calibrated for higher concentrations
3/1	104	Sall	2	value matches duplicate and on wore full of breakish water. Brebable
				contamination)
3/1	107	dfe	2	Note: Calibrated for higher concentrations
3/1	100	dfe	∠ 2	Note: Calibrated for higher concentrations
3/1	113	hottle	2	Still leaking from top ball
3/1	113	dfe	2	Note: Calibrated for higher concentrations
3/1	113	no2	2	Sampled out of sequence. File fixed so that values match duplicates and
			<i>L</i>	CTD data.
3/1	113	no3	2	Sampled out of sequence. File fixed so that values match duplicates and
.			-	CTD data.
3/1	113	po4	2	Sampled out of sequence. File fixed so that values match duplicates and
		1	-	CTD data.
3/1	113	salt	2	Sampled out of sequence. File fixed so that values match duplicates and
				CTD data.

Station	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
3/1	113	sio3	3	Values should be duplicates but are approx. 2uM different. Not sure
3/1	114	sio3	3	Values should be duplicates but are approx. 2uM different. Not sure which is correct.
3/1	115	dfe	2	Note: Calibrated for higher concentrations
3/1	115	dfe2_btl	5	No data (ND) reported
3/1	115	no2	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	115	no3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	115	po4	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	115	salt	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	115	sio3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	119	dfe	2	Note: Calibrated for higher concentrations
3/1	119	no2	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	119	no3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	119	ро4	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	119	salt	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	119	sio3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	121	dfe	2	Note: Calibrated for higher concentrations
3/1	121	no2	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	121	no3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	121	ро4	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	121	salt	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/1	121	sio3	2	Sampled out of sequence. File fixed so that values match duplicates and CTD data.
3/5	504	bottle	4	Bottle did not close: repositioned carousel twice, total 3x NO-confirms.
3/5	510	o2	3	Bottle close to surface bottle value, appears to be too high for sharp
				gradient on both down and up casts. Analyst noted no obvious errors.
3/5	510	sbe35rt	3	SBE35RT +0.105/+0.065 vs CTDT1/CTDT2; unstable SBE35RT reading in a gradient.
3/5	512	bottle	4	Bottle did not close, but did confirm.
3/7	704	bottle	4	Bottle did not close; confirmed, but apparent mechanical issue with carousel.
3/7	709	sbe35rt	3	SBE35RT +0.025/-0.045 vs CTDT1/CTDT2; unstable SBE35RT reading in a gradient.
3/7	710	bottle	4	Bottle did not close; confirmed, but apparent mechanical issue with carousel.

Station	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
3/7	712	bottle	4	Bottle did not close; confirmed, but apparent mechanical issue with
3/25	2525	bottle	2	CTD data for Surface EISH sample from 003/07 (30-ODE) up-cast
3/25	2525	dfe	2	Analyzed separately with calibration for lower concentrations
4/1	107	bottle	2	Air leak
4/1	113	dfe	2	Verified with repeat analysis
4/1	115	dfe2 btl	5	No data (ND) reported
4/1	117	dfe2_btl	5	No data (ND) reported
4/1	119	dfe2_btl	5	No data (ND) reported
4/1	122	bottle	2	l eaked when pressurized snapped ball
4/2	206	bottle	4	Mistrip: deck saw bottle trip at surface.
4/2	206	no2	4	Mistrip.
4/2	206	no3	4	Mistrip.
4/2	206	02	4	Mistrip.
4/2	206	po4	4	Mistrip.
4/2	206	salt	4	Mistrip.
4/2	206	sio3	4	Mistrip.
4/4	403	bottle	2	Niskin leaky.
4/4	412	bottle	2	Niskin leaky.
4/4	413	corer	2	some sediments recovered, but partially emptied upon retrieval.
4/25	2525	bottle	2	CTD data for Surface FISH sample from 004/04 (30-ODF) up-cast.
5/1	109	dfe2 btl	5	never analyzed
5/1	111	dfe2 btl	5	never analyzed
5/1	115	dfe	2	Verified with repeat analysis
5/1	116	dfe2 svr	5	never analyzed
5/2	205	o2	4	Flask 696 neck cracked. Value high, probable exposure to air.
5/2	205	salt	2	Value matches CTD. (Analyst: Salt 5 - readings erratic and unpredictably
E/0	200	aalt	2	Variable.)
5/2	209	Sall	Z	9 - Readings kept climbing)
5/2	212	bottle	2	Niskin hottom seal leak
5/4	410	sbe35rt	3	SBE35RT -0.08 vs CTDT1/CTDT2: unstable SBE35RT reading in a
	110	0000011	0	gradient.
5/4	412	bottle	2	Niskin leaky.
5/5	509	no2	2	Sampling error, drawn into tube 11.
5/5	509	no3	2	Sampling error, drawn into tube 11.
5/5	509	po4	2	Sampling error, drawn into tube 11.
5/5	509	salt	2	Sampling error, drawn into tube 11.
5/5	509	sio3	2	Sampling error, drawn into tube 11.
5/5	511	dfe	2	Verified with repeat analysis
5/5	511	no2	5	Sampling error, none drawn.
5/5	511	no3	5	Sampling error, none drawn.
5/5	511	po4	5	Sampling error, none drawn.
5/5	511	salt	5	Sampling error, none drawn.
5/5	511	sio3	5	Sampling error, none drawn.
5/5	513	no2	3	values should be duplicates but are approx. 1.2uM different. Not sure which is correct.
5/5	513	no3	3	Values should be duplicates but are approx. 3uM different. Not sure
		-	_	which is correct.
5/5	514	no2	3	Values should be duplicates but are approx. 1.2uM different. Not sure which is correct.

Statio	ation Sample		Quality			
/Cast	No.	Property	Code	Comment		
5/5	514	no3	3	Values should be duplicates but are approx. 3uM different. Not sure		
5/5	514	1105	5	which is correct		
5/5	515	bottle	2	Handle leaking		
5/5	516	dfo2 svr	5	never analyzed		
5/5	520	bottle	1	Did not fire		
5/6	520 603	bottle	- + 2	Dia not nie. Nickin leaky		
5/6	612	bottle	2	Niskin leaking badly. Water feels anomalously warm		
5/6	613	corer	5	no sediments recovered from corer		
5/25	2525	bottle	2	CTD data for Surface EISH sample from 005/06 (30-ODE) up-cast		
6/1	120	bottle	2 1	CoEle in position 20 did not fire. No complex taken		
6/1	120	solt	- + 2	samples recorded during salt run were labeled 20-23, but goffe position		
0/1	121	San	2	20 was not sampled, re-aligned samples with correct depth, all samples		
				20 was not sampled. Te-aligned samples with correct depth, all samples		
6/1	100	calt	2	samples recorded during salt run were labeled 20-23, but goffe position		
0/1	122	San	2	20 was not sampled, re-aligned samples with correct depth, all samples		
				20 was not sampled. Te-aligned samples with correct depth, all samples		
6/1	123	calt	2	samples recorded during salt run were labeled 20-23, but goffe position		
0/1	123	Salt	2	20 was not sampled to aligned samples with correct dopth, all samples		
				20 was not sampled. Te-aligned samples with correct depth, all samples		
6/1	124	colt	2	now agree with CTD values.		
0/1	124	Salt	2	20 was not sampled to aligned samples with correct dopth, all samples		
				20 was not sampled. Te-aligned samples with correct depth, all samples		
6/2	202	bottlo	2	Nickin looku		
6/25	203	bottle	2	NISKIII leaky. CTD data for Surface FISH comple from 006/02 (20 ODE) up cost		
0/20	2020	bottle	2	Violin alightly looky bettern and con		
7/2	203	bottle	2	Niskin slightly leaky, bottom end cap.		
7/5	Z11 500	dfo2 bt	2	Niskin slightly leaky, bottom end cap.		
7/5	523	ulez_bu	5	Niekie elizetty looky		
7/0	00Z	Dottle	<u>ک</u>	Niskin slightly leaky.		
1/0	807	San	4	value approx. 0.01 high compared to duplicate and CTD data. (Analyst.		
7/0	011	bottlo	1	Sail 7 - Readings very enalic and slow to stabilize.		
7/0	014 017	Dollie po2	4	Mistrip.		
7/0	014	1102	4	Value high compared to duplicate.		
7/0	014 017	no4	4	Value high compared to duplicate.		
7/0	014 017	p04 colt	4	Value approx 0.005 lower than duplicate.		
7/0	014 017	sait	4	Value high compared to duplicate. Mistrip.		
7/11	1100	dfo2 htl	4	value nigh compared to duplicate.		
7/11	1109	dfe	2	Verified with repeat analysis		
7/11	110	dfo	2	Verified with repeat analysis		
7/12	1203	bottle	2	Bottom can look		
7/12	1203	bottle	2	Bottom cap leak		
7/12	1211	bottle	2 1	Bottle did not close		
7/25	2525	bottle	- + 2	CTD data for Surface FISH sample from 007/05 (CT-C) up-cast		
8/2	2020	hottle	2	Slight bottom can leak		
8/2	201	bottle	2	Niskin bottom leak		
8/2	203	sha25rt	2	SRE35RT -0.03 ve CTDT1/CTDT2: unetable SRE35RT reading in a		
0/2	210	SDESOIL	3	aradient		
8/25	2525	hottla	2	Gradient. CTD data for Surface FISH sample from 008/02 (20 ODE) up cast		
0/20	2020	dfo2 btl	2	Duplicate values reported used first value		
0/2	203	hottle	2	Bottom can leak		
0/1	200 /02	bottle	2	Bottom can leak		
J 3/4	400	DOULE	۷			

Station	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
9/4	408	sbe35rt	3	SBE35RT -0.10/-0.11 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
9/4	410	salt	2	Value matches CTD data (Analyst: Salt 10 - Readings erratic.)
9/6	609	sbe35rt	3	SBE35RT +0.11/-0.40 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
9/9	905	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 5 - Thimble came
				out with cap. Readings erratic.)
9/9	913	dfe	2	Verified with repeat analysis
9/9	919	bottle	2	Top ball not seated properly, snapped.
9/10	1011	bottle	2	Slight leak from bottom end cap.
9/25	2525	bottle	2	CTD data for Surface FISH sample from 009/05 (GT-C) up-cast.
10/1	103	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 10 - Thimble came
				out with cap. Readings rose rapidly during first sample. Possible
		-	-	contamination.)
10/1	108	no2	2	nut tubes 8 and 10 apparently both sampled from goflo in position 8.
10/1	108	no3	2	nut tubes 8 and 10 apparently both sampled from gofio in position 8.
10/1	108	po4	2	nut tubes 8 and 10 apparently both sampled from gofio in position 8.
10/1	108	SI03	2	nut tubes 8 and 10 apparently both sampled from gotio in position 8.
10/1	110	no2	2	nut tube 12 apparently sampled from gofio in position 10.
10/1	110	no3	2	nut tube 12 apparently sampled from gofio in position 10.
10/1	110	po4	2	nut tube 12 apparently sampled from gofio in position 10.
10/1	110	SIO3	2	nut tube 12 apparently sampled from gotio in position 10.
10/1	112	no2	5	gotio in position 12 apparently not sampled.
10/1	112	no3	5 F	golio in position 12 apparently not sampled.
10/1	112	μ04 αία2	э 5	golio in position 12 apparently not sampled.
10/1	202	SIUS bottlo	5 2	Joak at bottle and cap
10/2	203	sbo35rt	2	SRE35PT ± 0.03 vs CTDT1/CTDT2: unstable SRE35PT reading
10/2	207	she35rt	3	SBE35RT ± 0.025 vs CTDT1/CTDT2; unstable SBE35RT reading in a
10/2	200	3000011	0	aradient
10/2	210	sbe35rt	3	SBE35RT -0.04/-0.03 vs CTDT1/CTDT2: very unstable SBE35RT
10/2	210	0000011	Ũ	reading in a gradient
10/2	211	bottle	2	Leak at bottle end cap.
10/25	2525	bottle	2	CTD data for Surface FISH sample from 010/02 (30-ODF) up-cast.
11/1	106	salt	2	Deep cast. Value within 0.002 of duplicate. (Analyst: Salt 6 - Readings
				erratic.)
11/1	111	salt	3	Value approx. 0.005 lower than duplicate.
11/1	119	dfe2_btl	2	3514+1h: value was 0.00
11/4	409	sbe35rt	3	SBE35RT -0.28/-0.33 vs CTDT1/CTDT2; unstable SBE35RT reading in a
				gradient.
11/4	411	bottle	2	Bottom cap leak.
11/5	512	dfe2_syr	5	never analyzed
11/6	604	sbe35rt	3	SBE35RT -0.08/-0.075 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
11/6	605	sbe35rt	3	SBE35RT -0.095/-0.085 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
11/6	611	bottle	2	Slight leak at bottom end cap.
11/6	612	bottle	2	Slight leak at bottom end cap.
11/8	803	bottle	2	Bottom end cap leak.
11/8	811	bottle	2	Bottom end cap leak.
11/9	904	dte2_syr	5	never analyzed

Statior	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
11/9	915	dfe	2	Verified with repeat analysis
11/9	917	dfe	2	Verified with repeat analysis
11/9	924	dfe2 svr	4	first sample: hubble in line
11/10	1001	bottle	2	Bottom end can leak
11/10	1007	bottle	2	Top end can leak
11/10	1002	salt	2	Value matches dunlicate and CTD data (Analyst: Salt 28 - Thimble
11/10	1004	San	2	popped out wet Possible contamination)
11/11	1103	hottle	2	Bottom end can leak
11/11	1103	bottle	2	Big leak on bottom and can
11/11	1111	bottle	2	Top end can leak
11/13	1307	bottle	2	Bottom and can leak
11/13	1310	bottle	2 1	Bottle did not close lanvard on wrong latch
11/13	1310	bottle	4	Slight bottom and can leak
11/15	2525	bottle	2	CTD data for Surface EISH cample from 011/05 (GT-C) up-cast
11/25	2525	dfo	2	Vorified with repeat analysis
12/25	2525	bottlo	2	CTD data for Surface EISH cample from 012/02 (20 ODE) up cast
12/20	2020	bottle	Z 1	mistrin: putrients revealed incorrect values
10/1	119	dfo2 bt	4	anomolous high volue: bottle mis tripped
13/1	119		4	anomaious nigh value. bottle mis-tripped.
13/1	119	no2	4	mistrip.
13/1	119	103	4	mistrip.
13/1	119	po4	4	mistrip.
13/1	119	sait	4	mistrip.
13/1	119	SIO3	4	mistrip.
13/1	120	bottle	4	mistrip: nutrients revealed incorrect values.
13/1	120	no2	4	mistrip.
13/1	120	no3	4	mistrip.
13/1	120	po4	4	mistrip.
13/1	120	sait	4	mistrip.
13/1	120	SIO3	4	mistrip.
13/1	121		2	verified with repeat analysis
13/1	122	bottle	2	Leaked when bottom recovered, ball re-snapped in van.
13/2	201	salt	3	Values approx. 0.003 high compared to CTD data.
13/2	202	salt	3	Values approx. 0.003 high compared to CTD data.
13/2	206	bottle	2	Winch overshot NIS-6 firing depth by 11m, went back down to trip.
13/4	406	sbe35rt	3	SBE35RT -0.045/-0.04 Vs CTDT1/CTDT2; unstable SBE35RT reading in
40/5	504		•	a gradient.
13/5	501	dfe	2	Verified with repeat analysis
13/5	503	dfe	2	Verified with repeat analysis
13/5	508	dfe2_syr	4	
13/6	608	sbe35rt	3	SBE35RT +0.07/+0.09 vs CTDT1/CTDT2; very unstable SBE35RT
1.010				reading in a gradient.
13/9	912	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 12 - Thimble came
			-	out with cap, very wet. Probably contamination.)
13/9	919	bottle	2	Bottle did not open all the way.
13/10	1005	salt	3	Value approx. 0.005 high compared to CTD data.
13/25	2525	bottle	2	CTD data for Surface FISH sample from 013/05 (GT-C) up-cast.
13/25	2525	dfe	2	Verified with repeat analysis
14/1	117	bottle	2	Lanyard tight.
14/2	208	sbe35rt	3	SBE35RT +0.025 vs CTDT1/CTDT2; unstable SBE35RT reading in a
				gradient.

Station	n Sample	е	Quality	
/Cast	No.	Property	Code	Comment
14/2	210	sbe35rt	3	SBE35RT +0.08/+0.075 vs CTDT1/CTDT2; unstable SBE35RT reading
				in a gradient.
14/25	2525	bottle	2	CTD data for Surface FISH sample from 014/02 (30-ODF) up-cast.
15/1	108	dfe2_syr	2	2 values reported, used the first value
15/1	112	dfe2_syr	2	2 values reported, used the first value
15/1	123	dfe	2	Verified with repeat analysis
15/2	203	salt	3	Value approx. 0.003 high compared to CTD data.
15/2	210	salt	2	Value matches CTD data. (Analyst: Salt 10 - Thimble popped out early.
				Probable contamination.)
15/5	523	dfe	2	Verified with repeat analysis
15/6	603	salt	2	Value matches CTD data. (Analyst: Salt 27 - Contamination, cause
				unknown.)
15/6	605	sbe35rt	3	SBE35RT -0.03 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
15/6	607	sbe35rt	3	SBE35RT -0.02/-0.03 vs CTDT1/CTDT2; unstable SBE35RT reading in a
				gradient.
15/9	910	dfe2_syr	2	2 values reported, used the first (A) value
15/9	912	dfe2_syr	2	2 values reported, used the first (A) value
15/9	916	dfe2_syr	2	2 values reported, used the first (A) value
15/9	921	dfe	2	Verified with repeat analysis
15/9	922	dfe2_syr	2	2 values reported, used the first (A) value
15/9	924	salt	4	Value is approx. 0.03 higher than duplicate and CTD data. (Analyst: Salt
				24 - Readings erratic and kept climbing slowly.)
15/10	1011	sbe35rt	3	SBE35RT -0.015 vs CTDT1/CTDT2, reading seems stable, but large
				difference for this deep. Code questionable.
15/10	1013	bottle	4	Deck: Lost sediment core as corer came out of the water; "missed it by
				that much".
15/10	1013	corer	3	corer barrel shifted as it exited water, but some scrapped sediments
				saved from inside the barrel.
15/25	2525	bottle	2	CTD data for Surface FISH sample from 015/05 (GT-C) up-cast.
16/1	105	salt	3	Value is approx. 0.005 higher than duplicate. (Analyst: salt 5 - Readings
			_	kept climbing. Thimble came out full of water. Probable contamination.)
16/1	115	bottle	2	Leaked when removed air valves, re-snapped bottom ball.
16/2	208	sbe35rt	3	SBE35RT +0.025 vs CTDT1/CTDT2; somewhat unstable SBE35RT
			-	reading in a gradient.
16/25	2525	bottle	2	CTD data for Surface FISH sample from 016/02 (30-ODF) up-cast.
17/1	101	as_3	В	As(III) value <0.01, below detection limit
17/1	105	as_3	В	As(III) value <0.01, below detection limit
1//1	105	bottle	4	Mistrip.
1//1	105	no2	4	Potential mistrip, confirmed with salts.
17/1	105	no3	4	Potential mistrip, confirmed with salts.
17/1	105	po4	4	Potential mistrip, confirmed with saits.
1//1	105	Salt	4	value approx. 0.02 lower than duplicate, CTD data.
1//1	105	SIO3	4	Potential mistrip, confirmed With Saits.
17/1	106	aie∠_syr	5	missing label on syringe, not analyzed.
17/1	107	OUTIO	4	Bottom ball leaked, snapped in van. Nutrients revealed mistrip.
17/1	107	are	2	Analytically sound, but questionable GOFIO bottle!"
17/1	107	110Z	4	IVIISUIP. Mietrie
17/1	107	1103	4	IVIISUIP. Mietrie
17/1	107	p04 colt	4	iviisuip. Mietrie
17/1 -	107	Salt	4	

Station	n Sample	e	Quality	
/Cast	No.	Property	Code	Comment
17/1	107	sio3	4	Mistrip.
17/1	109	bottle	2	Bottom ball leaks when pressurized.
17/1	113	as_3	В	As(III) value <0.01, below detection limit
17/1	113	dfe	2	Verified with repeat analysis
17/1	116	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 16 - Thimble came
				out with cap, very wet. Suspect liquid from thimble ran into bottle.)
17/1	120	bottle	4	Mistrip revealed with nutrient data.
17/1	120	dfe2_syr	4	Mis-trip
17/1	120	no2	4	Mistrip.
17/1	120	no3	4	Mistrip.
17/1	120	po4	4	Mistrip.
17/1	120	salt	4	Mistrip.
17/1	120	sio3	4	Mistrip.
17/1	122	salt	3	Value approx. 0.005 lower than duplicate.
17/4	404	sbe35rt	3	SBE35RT -0.105/-0.125 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
17/5	505	bottle	4	Mistrip revealed by nutrient and salt data.
17/5	505	no2	4	Other nutrient values low compared to duplicate, mistrip.
17/5	505	no3	4	Value low compared to duplicate, mistrip.
17/5	505	po4	4	Value low compared to duplicate, mistrip.
17/5	505	salt	4	Value approx. 0.06 higher than duplicate, mistrip.
17/5	505	sio3	4	Value low compared to duplicate, mistrip.
17/5	511	salt	3	Value approx. 0.01 higher than duplicate, gradient.
17/6	608	sbe35rt	3	SBE35RT -0.045/-0.055 vs CTDT1/CTDT2; somewhat unstable
				SBE35RT reading in a gradient.
17/6	610	sbe35rt	3	SBE35RT -0.025/-0.035 vs CTDT1/CTDT2; somewhat unstable
				SBE35RT reading in a gradient.
17/8	803	bottle	4	Mistrip revealed with nutrient data.
17/8	803	dfe	2	"Analytically sound, but questionable GoFlo bottle!"
17/8	803	no2	4	Mistrip.
17/8	803	no3	4	Mistrip.
17/8	803	po4	4	Mistrip.
17/8	803	salt	4	Mistrip.
17/8	803	sio3	4	Mistrip.
17/8	807	as_3	В	As(III) value <0.01, below detection limit
17/8	809	as_3	В	As(III) value <0.01, below detection limit
17/8	809	bottle	2	Leaked from bottom, snapped bottom ball.
17/8	810	salt	4	Value is approx. 0.006 higher than duplicate. (Analyst: Salt 10 - Thimble
				came out with cap, dry salt present. Possible contamination.)
17/8	811	as_3	В	As(III) value <0.01, below detection limit
17/8	813	bottle	2	Snapped bottom ball, leaking.
17/8	813	dfe	2	"Analytically sound, but questionable GoFlo bottle!"
17/8	815	as_3	В	As(III) value <0.01, below detection limit
17/8	815	bottle	2	Leaky spigot.
17/8	815	dfe	2	Verified with repeat analysis
17/8	817	as_3	В	As(III) value <0.01, below detection limit
17/8	820	bottle	9	Spigot broke off, no samples taken.
17/9	902	bottle	2	Leaky spigot. Post-sampling, discovered spine leak in NIS-2; replaced
				with NIS-22 before station 18.
17/25	2525	bottle	2	CTD data for Surface FISH sample from 017/05 (GT-C) up-cast.
18/2	201	bottle	4	Nutrient data revealed mistrip.

Statior	n Sample	е	Quality	,
/Cast	No.	Property	Code	Comment
18/2	201	no2	4	Mistrin
18/2	201	no3	4	Mistrip
18/2	201	no4	4	Mistrip.
18/2	201	salt		Mistrip.
18/2	201	sing		Mistrip.
18/2	201	bottle		Re-snanned top hall. Nutriants revealed mistrin
18/2	207	pollie	4	Mietrin
10/2	207	no2	4	Mistrip.
10/2	207	no3	4	Mistrip.
10/2	207	p04 colt	4	Mistrip.
10/2	207	sai	4	Mistrip.
10/2	207	SIUS	4	Misilip.
10/2	221	bollie	4	Nutrient data revealed mistrip.
10/2	221	102	4	Mistrip.
18/2	221	103	4	Mistrip.
18/2	221	p04	4	Mistrip.
18/2	221	salt	4	Mistrip.
18/2	221	SI03	4	
18/2	223	as_3	В	As(III) value <0.01, below detection limit
18/2	223	bottle	2	Noise from spigot.
18/2	224	bottle	2	Still leaking when pressurized.
18/4	407	sbe35rt	3	SBE35RT +0.045/+0.025 vs CTDT1/CTDT2; unstable SBE35RT reading
			-	in a gradient.
18/5	507	bottle	2	Snap top ball.
18/5	516	bottle	2	Leaking from bottom when air plug removed.
18/5	521	dfe	2	"Analytically sound, but questionable GoFlo bottle!"
18/5	523	bottle	2	Making noise, bottom ball.
18/6	604	sbe35rt	3	SBE35RT -0.05/-0.085 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
18/6	606	sbe35rt	3	SBE35RT -0.035/-0.03 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
18/9	911	bottle	3	Value approx. 0.005 higher than duplicate.
18/9	913	bottle	2	Leaky spigot.
18/9	919	bottle	2	Neoprene rubber broke.
18/11	1112	sbe35rt	3	SBE35RT -0.025 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading.
18/13	1305	bottle	2	Large nipples still pushed in and dripping on recovery.
18/13	1306	bottle	2	Large nipples still pushed in and dripping on recovery.
18/13	1308	sbe35rt	3	SBE35RT +0.02/-0.03 vs CTDT1/CTDT2; all 3 readings disagree, in a
				gradient. Only coded SBE35RT questionable.
18/13	1309	sbe35rt	3	SBE35RT -0.75/-0.055 vs CTDT1/CTDT2; unstable SBE35RT reading in
				a gradient.
18/13	1310	sbe35rt	3	SBE35RT -0.02/-0.04 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
18/14	1411	salt	3	Value approx. 0.006 higher than duplicate.
18/14	1413	as 3	В	As(III) value <0.01, below detection limit
18/14	1417	dfe	2	Verified with repeat analysis
18/14	1419	as 3	В	As(III) value <0.01, below detection limit
18/14	1420	bottle	2	Leaked about 1 liter.
18/14	1422	salt	4	Value is approx, 0.003 higher than duplicate. (Analyst: Salt 22 - Thimble
				came out with cap. Probable contamination.)

Statior	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
18/17	1704	bottle	2	dFell sample collected in a bottle, later filtered in the lab by J.Moffett (not the same as Acropak-filtered on GT-C GoElos)
18/17	1705	bottle	2	dFeII sample collected in a bottle, later filtered in the lab by J.Moffett (not the same as Acropak-filtered on GT-C GoFlos). Remainder sample pressure-filtered through 0.45um/47mm diam. Supor Filter, 15L collected in 20L cubitainer for Th/Pa/Nd/REE/LDEO_Archive (may be separated into 3 distinct samples after returning to LDEO). 60mL removed from cubitainer for Th/Pa colloids, acidified w/Saville-distilled 6M HCI. Filter/narticles saved for Sherrell Partic TM analysis
18/17	1706	bottle	2	dFeII sample collected in a bottle, later filtered in the lab by J.Moffett (not the same as Acropak-filtered on GT-C GoFlos).
18/25	2525	bottle	2	CTD data for Surface FISH sample from 018/05 (GT-C) up-cast.
19/1	101	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	102	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	103	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	104	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	105	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	106	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	107	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	108	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	109	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	110	noaa uf	В	Mn is less than 0.35nM - below detection limit
19/1	111	noaa_uf	В	Mn is less than 0.35nM - below detection limit
19/1	112	noaa_uf	В	Mn is less than 0.35nM - below detection limit
20/1	107	salt	3	Value approx. 0.004 higher than duplicate.
20/1	117	as_3	В	As(III) value <0.01, below detection limit
20/5	506	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 6 - Thimble came
20/8	804	salt	3	Value approx 0.006 bigher than duplicate
20/25	2525	bottle	2	CTD data for Surface FISH sample from 020/05 (GT-C) up-cast
21/1	106	bottle	2	Spigot leaky
21/5	503	dfe	2	Verified with repeat analysis
21/5	517	bottle	2	Shrimp in bottle ended up in Acropak, removed before sampling.
21/5	517	dfe	2	Verified with repeat analysis
21/6	607	sbe35rt	3	SBE35RT -0.02/+0.01 vs CTDT1/CTDT2: all 3 readings disagree, in a
			-	gradient. Only coded SBE35RT questionable.
21/8	801	as_3	В	As(III) value <0.01, below detection limit
21/8	813	dfe	2	Verified with repeat analysis
21/8	821	as_3	В	As(III) value <0.01, below detection limit
21/9	913	corer	2	very little sediment recovered, probably due to sediment leaking out on its way up.
21/25	2525	bottle	2	CTD data for Surface FISH sample from 021/05 (GT-C) up-cast.
22/2	205	sbe35rt	3	SBE35RT -0.035 vs CTDT1/CTDT2; unstable SBE35RT reading in a
22/2	207	sbe35rt	3	gradient. SBE35RT -0.02/-0.03 vs CTDT1/CTDT2; somewhat unstable SBE35RT
		1	-	reading in a gradient.
22/25	2525	bottle	2	CTD data for Surface FISH sample from 022/02 (ODF) up-cast.
23/2	218	salt	3	Value approx. 0.008 higher than duplicate and CTD data.
23/6	609	bottle	4	Bottle did not close, lanyard caught on latch.
23/6	610	sbe35rt	3	reading in a gradient.

Statior	ation Sample		Quality	
/Cast	No.	Property	Code	Comment
23/9	904	salt	3	Value approx. 0.013 higher than duplicate and CTD data.
23/10	1013	corer	2	very little sediment recovered, probably due to sediment leaking out on
				its way up.
24/2	206	sbe35rt	3	SBE35RT -0.035 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
25/1	109	salt	3	Value approx. 0.008 higher than duplicate and CTD data.
25/2	208	sbe35rt	3	SBE35RT +0.003 vs CTDT1/CTDT2; somewhat unstable SBE35RT
			-	reading for deep data.
25/2	211	sbe35rt	3	SBE35RT +0.004 vs CTDT1/CTDT2: unstable SBE35RT reading for
		0.00011	Ū.	deep data.
25/4	406	sbe35rt	3	SBE35RT -0.04 vs CTDT1/CTDT2; somewhat unstable SBE35RT
20, 1	100	0000011	U	reading in a gradient
25/8	804	salt	3	Value approx 0.004 higher than duplicate and CTD data
25/8	807	salt	3	Value approx. 0.005 higher than duplicate and CTD data.
25/8	809	salt	3	Value approx. 0.004 higher than duplicate and OTD data.
25/8	81/	salt	3	Value approx. 0.004 higher than duplicate and CTD data.
25/8	816	salt	3	Value approx. 0.004 higher than duplicate and CTD data.
25/0	010	salt	2	Value approx. 0.004 higher than duplicate and CTD data.
25/0	021	salt	2	Value approx. 0.004 higher than duplicate and CTD data.
25/0	023	Sall	ა ი	Value approx. 0.004 higher than duplicate and CTD data.
25/9	900		2	Leaky.
25/9	900	Sall	ა ი	Value approx. 0.003 higher than duplicate and CTD date.
20/1	103	Sall	3	Value approx. 0.013 lower than duplicate and CTD data.
26/1	122	Salt	3	value approx. 0.005 higher than duplicate and CTD data.
26/2	208	bottle	2	Leaky.
26/10	1008	bottle	2	Bottom end cap leak.
26/10	1009	salt	3	Value approx. 0.003 higher than duplicate and CTD data. (Analyst: Salt
				33 - Thimble came out with cap. Possible contamination.)
26/11	1103	salt	2	Value corresponds with CTD trace. (Analyst: Salt 3 - Thimble came out
				with cap. Wet. Probable contamination.)
26/11	1104	salt	3	Value approx. 0.008 higher than duplicate and CTD data.
26/11	1110	salt	3	Value approx. 0.013 higher than duplicate and CTD data.
26/12	1208	salt	3	Value approx. 0.004 lower than duplicate and CTD data.
26/17	1706	salt	2	Value matches CTD data. (Analyst: Salt 6 - Thimble came out with cap.
		_		Probable contamination.)
27/1	103	salt	4	Value approx. 0.006 higher than duplicate and CTD data. (Analyst: Salt 3
				- Thimble popped half way out early, full of water. Possible
		_		contamination.)
28/1	110	salt	4	Value approx. 0.008 higher than duplicate and CTD data. (Analyst: Salt
				10 - Thimble came out with cap, full of water. Possible contamination.)
28/1	113	bottle	2	Did not slow down to trip bottles.
28/1	114	bottle	2	Did not slow down to trip bottles.
28/1	121	salt	2	Value matches duplicate and CTD data. (Analyst: Salt 21 - Thimble came
				out with cap, full of water. Probable contamination.)
28/4	405	sbe35rt	3	SBE35RT +0.04 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
28/4	406	sbe35rt	3	SBE35RT -0.04 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
28/4	407	sbe35rt	3	SBE35RT -0.01/-0.03 vs CTDT1/CTDT2; unstable SBE35RT reading in a
				gradient.
28/5	522	salt	3	Value approx. 0.003 higher than duplicate and CTD trace.

Statior	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
28/6	607	sbe35rt	3	SBE35RT +0.05/-0.01 vs CTDT1/CTDT2, and CTDS1-CTDS2 are stable; SBE35RT reading coded guestionable.
28/8	801	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 1 tripped at the shallowest level instead of the deepest. CTD trip data modified to
28/8	803	bottle	2	realign bottles with proper trip depths. nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 3 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths
28/8	805	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 5 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths.
28/8	806	bottle	4	Mistrip confirmed with salt and nutrient data.
28/8	806	no2	4	Mistrip.
28/8	806	no3	4	Mistrip.
28/8	806	po4	4	Mistrip.
28/8	806	salt	4	Mistrip. (Analyst: Salt 6 - Readings erratic.)
28/8	806	SIO3	4	Mistrip.
28/8	807	Dottie	4	dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 7 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip
28/8	807	no2	4	depiils. Mistrin
28/8	807	no3	4	Mistrip.
28/8	807	po4	4	Mistrip.
28/8	807	salt	4	Mistrip.
28/8	807	sio3	4	Mistrip.
28/8	809	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 9 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths.
28/8	811	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 11 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths
28/8	813	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 13 tripped one level deeper than intended. CTD trip data modified to realign bettles with proper trip depte
28/8	815	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 15 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths.
28/8	817	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 17 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths.

Statior	n Sample	Э	Quality	
/Cast	No.	Property	Code	Comment
28/8	819	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 19 tripped one level deeper than intended. CTD trip data modified to realign
28/8	821	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 21 tripped one level deeper than intended. CTD trip data modified to realign
28/8	823	bottle	2	nutrient, salt and dfe data indicate "odd" (Acropak) goflos hooked onto carousel latches with wrong "even" (membrane) goflos; sample 23 tripped one level deeper than intended. CTD trip data modified to realign bottles with proper trip depths.
29/1	109	salt	2	Value approx. 0.005 lower than duplicate; gradient. (Analyst: Salt 9 - Thimble came out with cap. Possible contamination.)
29/1	114	bottle	2	Had to re-snap ball.
29/2	205	sbe35rt	3	SBE35RT +0.025 vs CTDT1/CTDT2; unstable SBE35RT reading in a
29/2	206	sbe35rt	3	gradient. SBE35RT +0.03/+0.02 vs CTDT1/CTDT2; unstable SBE35RT reading in a gradient
29/2	207	sbe35rt	3	SBE35RT +0.06 vs CTDT1/CTDT2; somewhat unstable SBE35RT
30/2	212	salt	2	Value matches CTD data. (Analyst: Salt 12 - Thimble came out with cap. Possible contamination.)
30/4	405	sbe35rt	3	SBE35RT +0.075/+0.085 vs CTDT1/CTDT2; somewhat unstable SBE35RT reading in a gradient.
30/5	511	bottle	2	Did not spit.
30/5	521	bottle	2	Did not spit.
30/5	521	salt	3	Value is approx. 0.016 higher than duplicate and CTD trace.
30/5	523	bottle	2	Did not spit.
30/6	611	bottle	2	Niskin leaking at top.
30/8	801	bottle	2	Did not spit.
30/8	806	bottle	4	Mistrip confirmed with nutrient and salt data.
30/8	806	no2	4	Mistrip.
30/8	806	no3	4	Mistrip.
30/8	806	po4	4	Mistrip.
30/8	806	salt	4	Value approx. 0.016 lower than duplicate and CTD trace. Mistrip.
30/8	806	sio3	4	Mistrip.
30/8	819	bottle	2	Did not spit, leaky spigot.
30/8	821	bottle	2	Did not spit.
30/8	823	Dottle	2	Leaky spigot.
30/8	824	salt	2	came out with cap. Probable contamination.)
30/10	1003	bottle	2	Did not spit.
30/10	1004	salt	3	Value approx. 0.006 higher than duplicate and CTD trace.
30/10	1006	salt	3	value approx. 0.003 higher than duplicate. (Analyst: Salt 6 - Thimble came out with cap. Probable contamination.)
30/10	1009	bottle	2	Did not spit.
30/10	1017	bottle	2	Did not spit.
31/1	104	bottle	2	GF#03 Had to re-snap bottom ball, leaking outside.
31/1	109	bottle	2	GF#08 did not spit.
31/1	115	pottle	2	GF#18 did not spit.

Statior	n Sample	е	Quality	
/Cast	No.	Property	Code	Comment
31/1	121	bottle	2	GF#21 did not spit.
31/2	206	sbe35rt	3	SBE35RT +0.04/+0.03 vs CTDT1/CTDT2; unstable SBE35RT reading in
				a gradient.
32/5	515	bottle	2	GF#29 did not spit much.
32/5	519	bottle	2	GF#33 did not spit.
32/5	523	bottle	2	GF#01 did not spit much.
32/9	901	bottle	2	GF#05 did not spit.
32/9	904	salt	3	Value approx. 0.005 higher than duplicate and CTD trace.
32/9	909	bottle	2	GF#19 top ball leaking.
32/9	917	salt	4	Value approx. 0.012 higher than duplicate and CTD trace. (Analyst: Salt 17 - Thimble came out with cap. Wet. Readings erratic. Probable
22/0	0.01	hattla	2	Containination.)
32/9	921		Z 1	OF#01 did field spil.
32/9	921	Sall	4	21 - Thimble popped out early. Readings erratic. Possible contamination.)
32/9	923	DOTTIE	2	GF#03 did not spit.
33/1	123	DOTTIE	2	GF#05 did not spit.
33/2	207	SDE35IT	3	SBE35RT -0.025/-0.04 VS CTDTT/CTDT2; somewhat unstable SBE35RT
24/4	447	h a 441 a	0	reading in a gradient.
34/1	117	bottle	2	GF#01 did not spit.
34/1	119	Dottle	2	GF#03 did hot spit.
34/1	120	Salt	3	Value approx. 0.004 higher than duplicate and CTD trace.
34/1	121	DOTTIE	2	GF#05 did not spit.
34/2	206	SDe35rt	3	reading in a gradient.
34/2	211	bottle	2	Leaky top cap.
34/5	513	salt	2	Value matches duplicate and CTD trace. (Analyst: Salt 13 - Thimble
				loose in bottle. Possible contamination.)
34/5	515	bottle	2	GF#01 did not spit.
34/5	519	bottle	2	GF#05 did not spit.
34/6	606	02	3	May be a duplicate draw from niskin 5.
35/1	113	bottle	2	GF#01 did not spit.
35/1	117	bottle	2	GF#05 did not spit.
35/1	121	bottle	2	GF#11 did not spit at all.
35/2	205	sbe35rt	3	SBE35RT -0.06/-0.055 vs CTDT1/CTDT2; very unstable SBE35RT
			-	reading in a gradient.
35/2	208	sbe35rt	3	SBE35RT +0.045/+0.05 vs CTDT1/CTDT2; somewhat unstable
		_	_	SBE35RT reading in a gradient.
35/2	212	02	5	Flask broken, sample lost.
36/1	101	as_3	В	As(III) value <0.01, below detection limit
36/1	103	as_3	В	As(III) value <0.01, below detection limit
36/1	106	as_3	В	As(III) value <0.01, below detection limit
36/1	108	as_3	В	As(III) value <0.01, below detection limit
36/1	110	as_3	В	As(III) value <0.01, below detection limit
36/1	110	salt	2	came out with cap. Wet. Probable contamination.)
36/1	112	as_3	В	As(III) value <0.01, below detection limit
36/1	113	as_3	В	As(III) value <0.01, below detection limit
36/1	113	bottle	2	GF#03 leaking, snapped bottom ball, did not spit.
36/1	114	bottle	2	GF#18 stop cock leaking.
36/1	115	bottle	2	GF#05 did not spit.

Statior	Station Sample		Quality	,
/Cast	No.	Property	Code	Comment
36/1	116	as 3	В	As(III) value <0.01, below detection limit
36/1	118	as 3	В	As(III) value <0.01, below detection limit
36/1	120	as 3	В	As(III) value <0.01, below detection limit
36/1	121	bottle	2	GF#13 did not spit much.
36/1	121	salt	2	Value matches duplicate and CTD trace. (Analyst: Salt 21 - Thimble
			_	came out with cap. Wet. Readings erratic. Possible contamination.)
36/1	122	as_3	В	As(III) value <0.01, below detection limit
36/1	124	as_3	В	As(III) value <0.01, below detection limit
36/1	124	salt	3	Value is approx. 0.005 higher than duplicate and CTD trace.
36/4	406	sbe35rt	3	SBE35RT +0.065/+0.075 vs CTDT1/CTDT2; very unstable SBE35RT
				reading in a gradient.
36/4	408	sbe35rt	3	SBE35RT -0.025/-0.045 vs CTDT1/CTDT2; somewhat unstable
				SBE35RT reading in a gradient.
36/4	410	sbe35rt	3	SBE35RT -0.025 vs CTDT1/CTDT2; somewhat unstable SBE35RT
				reading in a gradient.
36/5	511	bottle	2	GF#03 did not spit.
36/5	513	bottle	2	GF#05 did not spit.
36/6	605	sbe35rt	3	SBE35RT -0.09 vs CTDT1/CTDT2; very unstable SBE35RT reading in a
				gradient.
36/9	902	as_3	В	As(III) value <0.01, below detection limit
36/9	902	salt	4	Value is approx. 0.004 higher than duplicate and CTD trace. (Analyst:
				Salt 2 - Thimble came out with cap. Possible contamination.)
36/9	904	as_3	В	As(III) value <0.01, below detection limit
36/9	906	as_3	В	As(III) value <0.01, below detection limit
36/9	907	bottle	2	GF#01 did not spit much.
36/9	908	as_3	В	As(III) value <0.01, below detection limit
36/9	911	bottle	2	GF#05 did not spit.
36/9	912	as_3	В	As(III) value <0.01, below detection limit
36/9	913	bottle	2	GF#07 did not spit much.
36/9	914	as_3	В	As(III) value <0.01, below detection limit
36/9	916	as_3	В	As(III) value <0.01, below detection limit
36/9	917	Dottle	2	GF#13 did not spit much.
36/9	918	as_3	В	As(III) value <0.01, below detection limit
36/9	920	as_3	В	As(III) value <0.01, below detection limit
30/9	922	as_s	D 2	AS(III) Value <0.01, below detection IIIIII
30/9	923			GF#29 did hol spit much.
26/11	924	as_s	D 2	As(iii) value <0.01, below detection infin
26/11	1110	bottle	2	Bottom and can look
36/13	1205	sbo35rt	2	SRE35PT ±0.045 vg CTDT1/CTDT2: vgrv upgtable SRE35PT reading in
30/13	1305	SDESSIL	3	a gradient.
36/13	1306	sbe35rt	3	SBE35RT -0.02 vs CTDT1/CTDT2; unstable SBE35RT reading in a
				gradient.
36/13	1307	sbe35rt	3	SBE35RT +0.08/+0.075 vs CTDT1/CTDT2; unstable SBE35RT reading
				in a gradient.
36/13	1310	bottle	2	Bottom end cap leak.
36/13	1311	bottle	2	Top end cap leak.
References

Joyc94.

Joyce, T., ed. and Corry, C., ed., "Requirements for WOCE Hydrographic Programme Data Reporting," Report WHPO 90-1, WOCE Report No. 67/91, pp. 52-55, WOCE Hydrographic Programme Office, Woods Hole, MA, USA (May 1994, Rev. 2). UNPUBLISHED MANUSCRIPT.

Appendix D

U.S. GEOTRACES EPZT: Pre-Cruise Sensor Laboratory Calibrations

ODF/30L CTD 569 Sensors - Table of Contents					
CTD	Manufacturer	Serial	Appendix D Page		
Sensor	and Model No.	Number	(Un-Numbered)		
*PRESS (Pressure)	Digiquartz 401K-105	569-75672	1-3		
*T1 (Primary Temperature)	Sea-Bird SBE3plus	03P-2333	4		
*C1 (Primary Conductivity)	Sea-Bird SBE4C	04-2659	5		
*O2 (Dissolved Oxygen)	Sea-Bird SBE43	43-0875	6		
T2 (Secondary Temperature)	Sea-Bird SBE3plus	03P-2202	7		
C2 (Secondary Conductivity)	Sea-Bird SBE4C	04-3399	8		
*REFT-A (Reference Temperature)	Sea-Bird SBE35RT	3528706-0034	9		
*REFT-B (Reference Temperature)	Sea-Bird SBE35RT	3516590-0011	10		
*TRANS-B (Transmissometer)	WET Labs C-Star	CST-400DR	11-12		

* data reported for these sensors during U.S. GEOTRACES EPZT

SENSOR SERIAL NUMBER: 0569 CALIBRATION DATE: 29-JUL-2013 Mfg: SEABIRD Model: 09P CTD Prs s/n: 75672

C1= -4.262217E+4 C2= -2.383807E-1 C3= 1.107273E-2 D1= 3.735278E-2 D2= 0.000000E+0 T1= 3.044501E+1 T2= -4.104917E-4 T3= 3.738515E-6 T4= 9.322246E-9 T5= 0.000000E+0 AD590M= 1.28617E-2 AD590B= -8.28826E+0 Slope = 1.0000000E+0 Offset = 0.0000000E+0

Calibration Standard: Mfg: RUSKA Model: 2400 s/n: 34336 t0=t1+t2*td+t3*td*td+t4*td*td*td w = 1-t0*t0*f*f Pressure = (0.6894759*((c1+c2*td+c3*td*td)*w*(1-(d1+d2*td)*w)-14.7)

Sensor Output	Standard	Sensor New_Coefs	Standard- Sensor Prev_Coefs	Standard- Sensor NEW_Coefs	Sensor_Temp	Bath_Temp
2861.133	0.16	0.42	-0.23	-0.26	28.57	27.235
3064.106	364.94	364.85	0.12	0.09	28.59	27.235
3254.414	709.11	708.89	0.24	0.21	28.60	27.236
3443.699	1053.27	1053.35	-0.06	-0.08	28.60	27.236
3631.625	1397.51	1397.56	-0.02	-0.05	28.62	27.236
4003.872	2085.97	2085.98	0.00	-0.01	28.62	27.236
4371.508	2774.48	2774.49	0.00	-0.01	28.65	27.237
4734.651	3463.09	3463.05	0.03	0.03	28.65	27.238
4371.515	2774.48	2774.50	-0.01	-0.02	28.65	27.238
4003.896	2085.97	2086.01	-0.03	-0.04	28.65	27.238
3631.649	1397.51	1397.59	-0.05	-0.07	28.66	27.238
3443.721	1053.27	1053.36	-0.07	-0.09	28.68	27.239
3254.435	709.11	708.90	0.23	0.20	28.68	27.239
3064.124	364.94	364.85	0.12	0.09	28.68	27.239
2858.663	0.16	0.40	-0.15	-0.24	18.21	16.747
3061.613	364.94	364.85	0.18	0.09	18.21	16.746
3251.928	709.11	708.95	0.25	0.16	18.22	16.746

Sensor Output	Standard	Sensor New_Coefs	Standard- Sensor Prev Coefs	Standard- Sensor NEW Coefs	Sensor_Temp	Bath_Temp
33441.140	1053.27	1053.33	0.03	-0.06	18.22	16.746
33629.050	1397.52	1397.56	0.04	-0.05	18.22	16.746
34001.249	2085.97	2085.99	0.07	-0.02	18.23	16.746
34368.810	2774.49	2774.47	0.11	0.02	18.23	16.746
34731.915	3463.09	3463.05	0.12	0.04	18.23	16.745
35090.694	4151.76	4151.73	0.11	0.04	18.23	16.745
34731.926	3463.09	3463.07	0.10	0.02	18.23	16.745
34368.834	2774.49	2774.51	0.06	-0.02	18.23	16.746
34001.265	2085.97	2086.02	0.04	-0.05	18.23	16.746
33629.063	1397.52	1397.58	0.03	-0.07	18.23	16.745
33441.158	1053.27	1053.35	0.01	-0.08	18.23	16.745
33251.940	709.11	708.97	0.23	0.14	18.23	16.744
33061.628	364.94	364.86	0.17	0.08	18.24	16.744
32855.539	0.16	0.41	-0.18	-0.25	8.69	7.229
33058.456	364.94	364.84	0.17	0.10	8.69	7.229
33248.775	709.10	709.00	0.18	0.11	8.69	7.229
33437.836	1053.26	1053.13	0.21	0.13	8.69	7.229
33625.842	1397.51	1397.58	0.01	-0.07	8.69	7.229
33997.992	2085.96	2085.99	0.05	-0.04	8.69	7.229
34365.516	2774.47	2774.47	0.08	-0.00	8.70	7.229
34728.567	3463.07	3463.03	0.12	0.04	8.70	7.229
35087.306	4151.73	4151.70	0.11	0.03	8.70	7.229
35441.840	4840.46	4840.44	0.10	0.02	8.70	7.229
35792.302	5529.24	5529.24	0.07	0.00	8.70	7.228
35441.868	4840.46	4840.49	0.04	-0.03	8.70	7.228
35087.339	4151.73	4151.77	0.04	-0.04	8.69	7.228
34728.605	3463.08	3463.11	0.05	-0.03	8.69	7.227
34365.544	2774.47	2774.53	0.03	-0.05	8.69	7.227
33998.016	2085.96	2086.04	0.00	-0.08	8.69	7.226
33625.857	1397.51	1397.61	-0.02	-0.10	8.69	7.226
33437.856	1053.26	1053.17	0.17	0.10	8.69	7.226
33248.777	709.11	709.00	0.18	0.11	8.69	7.226
33058.474	364.94	364.88	0.14	0.07	8.69	7.226
32851.988	0.16	0.41	-0.23	-0.25	-0.02	-1.414
33054.911	364.95	364.86	0.11	0.09	-0.01	-1.414
33245.218	709.12	709.02	0.13	0.10	-0.01	-1.414
33434.230	1053.29	1053.09	0.22	0.19	-0.01	-1.414
33622.256	1397.54	1397.61	-0.03	-0.07	-0.01	-1.414
33994.384	2086.01	2086.03	0.03	-0.02	0.00	-1.414
34361.898	2774.54	2774.55	0.04	-0.01	0.01	-1.414
34724.923	3463.15	3463.12	0.09	0.04	0.01	-1.414
35083.628	4151.83	4151.78	0.11	0.06	0.01	-1.414
35438.158	4840.57	4840.56	0.07	0.01	0.01	-1.414
35788.579	5529.37	5529.34	0.09	0.03	0.01	-1.415
36135.085	6218.25	6218.26	0.03	-0.02	0.01	-1.414

 Sensor Output	Standard	Sensor New_Coefs	Standard- Sensor Prev Coefs	Standard- Sensor NEW_Coefs	Sensor_Temp	Bath_Temp
36477.652	6907.15	6907.05	0.15	0.11	0.01	-1.414
36135.093	6218.25	6218.28	0.02	-0.03	0.01	-1.415
35788.629	5529.37	5529.44	-0.01	-0.07	0.01	-1.414
35438.209	4840.57	4840.66	-0.03	-0.09	0.01	-1.415
35083.670	4151.83	4151.86	0.03	-0.02	0.01	-1.414
34724.949	3463.15	3463.16	0.04	-0.01	0.01	-1.414
34361.927	2774.54	2774.60	-0.01	-0.06	0.01	-1.414
33994.407	2086.01	2086.08	-0.03	-0.07	-0.00	-1.415
33622.273	1397.54	1397.64	-0.06	-0.10	-0.00	-1.415
33434.222	1053.29	1053.07	0.25	0.21	0.00	-1.414
33245.220	709.12	709.03	0.12	0.10	-0.00	-1.414
33054.908	364.95	364.86	0.11	0.09	-0.01	-1.415
32851.969	0.16	0.36	-0.18	-0.20	-0.00	-1.415

SENSOR SERIAL NUMBER: 2333

CALIBRATION DATE: 20-Aug-2013 Mfg: SEABIRD Model: 03 Previous cal: 14-May-13 Calibration Tech: CAL

ITS-90_COEFFICIENTS	IPTS-68_COEFFICIENTS ITS-T90	
g = 4.33445229E-3	a = 4.33464292E-3	
h = 6.42607195E-4	b = 6.42815984E-4	
i = 2.36892570E-5	c = 2.37216855E-5	
j = 2.36630976E-6	d = 2.36788147E-6	
f0 = 1000.0	Slope = 1.0	Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[In(f0/f)]+i[In2(f0/f)]+j[In3(f0/f)]} - 273.15 (°C) Temperature IPTS-68 = 1/{a+b[In(f0/f)]+c[In2(f0/f)]+d[In3(f0/f)]} - 273.15 (°C) T68 = 1.00024 * T90 (-2 to -35 Deg C)

SPRT-SBE3	SPRT-SBE3	SBE3	SPRT ITS-T90	SBE3 Freq
		110-130	110-130	
0.00015	-0.00025	-1.4971	-1.4969	2866.8252
-0.00017	-0.00052	1.0036	1.0034	3031.9216
-0.00017	-0.00044	4.5042	4.5040	3274.4583
0.00014	-0.00004	8.0064	8.0066	3530.7891
0.00012	0.00003	11.5080	11.5081	3801.1108
0.00014	0.00016	15.0012	15.0014	4085.1372
-0.00016	-0.00005	18.5055	18.5053	4384.7979
-0.00017	0.00002	22.0044	22.0042	4699.0732
-0.00001	0.00026	25.5061	25.5060	5028.9871
0.00020	0.00052	29.0043	29.0045	5374.2617
-0.0008	0.00027	32.5036	32.5035	5735.6150

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2659 CALIBRATION DATE: 28-Aug-13

SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

GHIJ COEFFICIENTS

$\alpha = -1.01196119e+001$	
h = 1.42654861e+000	
i = -1.17273496e-003	
i = 1.54999667e - 004	
CPcor = -9.5700e-008	(nominal)
CTcor = 3.2500e-006	(nominal)

a = 3.40836838e-006 b = 1.42365610e+000 c = -1.01140513e+001 d = -8.49616190e-005

ABCDM COEFFICIENTS

m = 5.3

CPcor = -9.5700e-008 (nominal)

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.66531	0.0000	0.00000
-1.0000	34.7398	2.79899	5.17207	2.79898	-0.00001
1.0000	34.7402	2.97008	5.28683	2.97009	0.00001
15.0000	34.7412	4.26337	6.08420	4.26339	0.00001
18.5000	34.7411	4.60947	6.28031	4.60945	-0.00001
29.0001	34.7404	5.69130	6.85696	5.69129	-0.00000
32.5001	34.7364	6.06364	7.04441	6.06364	0.00000

Conductivity = $(g + hf^{2} + if^{3} + jf^{4})/10(1 + \delta t + \epsilon p)$ Siemens/meter Conductivity = $(af^{m} + bf^{2} + c + dt)/[10(1 + \epsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 0875 CALIBRATION DATE: 13-Sep-13 SBE 43 OXYGEN CALIBRATION DATA

COEFFICIENTS	A = -3.6815e - 003	NOMINAL DYNAMIC COEFFICIENTS
Soc = 0.4576	B = 1.9772e - 004	D1 = 1.92634e-4 H1 = -3.30000e-2
Voffset = -0.5165	C = -3.0113e - 006	D2 = -4.64803e-2 $H2 = 5.00000e+3$
Tau20 = 0.95	E nominal = 0.036	H3 = 1.45000e+3

BATH OX	BATH TEMP	BATH SAL	INSTRUMENT	INSTRUMENT	RESIDUAL
(ml/l)	ITS-90	PSU	OUTPUT(VOLTS)	OXYGEN(ml/l)	(ml/l)
1.27	2.00	0.00	0.804	1.27	-0.00
1.28	6.00	0.00	0.841	1.27	-0.00
1.28	12.00	0.00	0.896	1.28	-0.00
1.30	20.00	0.00	0.973	1.30	0.00
1.31	26.00	0.00	1.030	1.32	0.00
1.32	30.00	0.00	1.069	1.32	0.00
4.03	2.00	0.00	1.432	4.03	-0.00
4.03	6.00	0.00	1.543	4.03	-0.00
4.05	12.00	0.00	1.716	4.05	0.00
4.11	20.00	0.00	1.956	4.11	0.01
4.11	26.00	0.00	2.123	4.11	0.00
4.11	30.00	0.00	2.238	4.11	0.00
6.79	2.00	0.00	2.061	6.79	0.00
6.79	6.00	0.00	2.249	6.80	0.00
6.81	12.00	0.00	2.533	6.81	-0.00
6.83	20.00	0.00	2.903	6.82	-0.01
6.90	30.00	0.00	3.406	6.90	-0.00
6.92	26.00	0.00	3.221	6.92	0.00

Oxygen (ml/l) = Soc * (V + Voffset) * $(1.0 + A * T + B * T^{2} + C * T^{3})$ * OxSol(T,S) * exp(E * P / K) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU], K = temperature [Kelvin] OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)

SENSOR SERIAL NUMBER: 2202

CALIBRATION DATE: 20-Aug-2013 Mfg: SEABIRD Model: 03 Previous cal: 21-May-13 Calibration Tech: CAL

ITS-90_COEFFICIENTS	IPTS-68_COEFFICIENTS ITS-T90	
g = 4.35827590E-3	a = 4.35847436E-3	
h = 6.46176984E-4	b = 6.46388903E-4	
i = 2.35597772E-5	c = 2.35925289E-5	
j = 2.24861242E-6	d = 2.25017477E-6	
f0 = 1000.0	Slope = 1.0	Offset = 0.0

Calibration Standard: Mfg: ASL Model: F18 s/n: 245-5149 Temperature ITS-90 = 1/{g+h[In(f0/f)]+i[In2(f0/f)]+j[In3(f0/f)]} - 273.15 (°C) Temperature IPTS-68 = 1/{a+b[In(f0/f)]+c[In2(f0/f)]+d[In3(f0/f)]} - 273.15 (°C) T68 = 1.00024 * T90 (-2 to -35 Deg C)

SPRT-SBE3	SPRT-SBE3	SBE3	SPRT	SBE3
		113-190	113-190	Fieq
0.00011	0.00018	-1.4970	-1.4969	2963.7114
-0.00016	-0.00002	1.0036	1.0034	3133.6946
-0.00007	0.00016	4.5041	4.5040	3383.3374
0.00013	0.00042	8.0064	8.0066	3647.1108
0.00003	0.00038	11.5081	11.5081	3925.1956
0.00005	0.00042	15.0013	15.0014	4217.2893
-0.00003	0.00038	18.5053	18.5053	4525.3564
-0.00016	0.00027	22.0044	22.0042	4848.3958
0.00005	0.00050	25.5060	25.5060	5187.4116
0.0009	0.00055	29.0044	29.0045	5542.1528
-0.00004	0.00046	32.5035	32.5035	5913.2974

Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 3399 CALIBRATION DATE: 27-Aug-13

SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

GHIJ COEFFICIENTS

g =	-1.0	155068	8e+001	
h =	1.5	362003	9e+000	
i =	-2.4	097065	5e-003	
j =	2.6	915698	6e-004	
CPc	or =	-9.570	0e-008	(nominal)
CTc	or =	3.250	0e-006	(nominal)

ABCDM COEFFICIENTS

a = 5.48535536e-007 b = 1.52981722e+000 c = -1.01420638e+001 d = -8.13503595e-005 m = 6.3 CPcor = -9.5700e-008 (nominal)

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREO (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.57480	0.00000	0.00000
-1.0000	34.7609	2.80053	4.99269	2.80052	-0.00001
1.0000	34.7614	2.97172	5.10341	2.97172	-0.00000
15.0000	34.7623	4.26569	5.87274	4.26570	0.00001
18.5000	34.7624	4.61199	6.06196	4.61200	0.00001
29.0000	34.7623	5.69447	6.61821	5.69441	-0.00006
32.5000	34.7557	6.06662	6.79887	6.06666	0.00004

Conductivity = $(g + hf^{2} + if^{3} + jf^{4})/10(1 + \delta t + \epsilon p)$ Siemens/meter Conductivity = $(af^{m} + bf^{2} + c + dt)/[10(1 + \epsilon p)]$ Siemens/meter

t = temperature[°C)]; p = pressure[decibars]; δ = CTcor; ϵ = CPcor;

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

SENSOR SERIAL NUMBER: 0034

CALIBRATION DATE: 18-Jun-2013 Mfg: SEABIRD Model: 35 Previous cal: 07-Dec-12 Calibration Tech: CAL

ITS-90_COEFFICIENTS							
a0 = 4.397003089E-3							
a1 = -1.190275919E-3							
a2 = 1.813764110E-4							
a3 = -1.011904489E-5							
a4 = 2.167420508E-7	a4 = 2.167420508E-7						
Slope = 1.000000 Offset = 0.000000							
Calibration Standard:	Mfg: ASL	Model: F18	s/n: 245-5149				
Calibration Standard:	Mfg: ASL	Model: F18	s/n: 245-5149				

Temperature ITS-90 = 1/{a0+a1[in(f)]+a2[in2(f)]+a3[in3(f)]+a4[in4(f)} - 273.15 (°C)

SBE35 Count	SPRT ITS-T90	SBE35 ITS-T90	SPRT-SBE35 OLD_Coefs	SPRT-SBE35 NEW_Coefs
716838.6659	-1.5025	-1.5025	0.00001	0.00001
642388.7534	0.9977	0.9977	0.00003	-0.00001
552221.8919	4.4985	4.4985	0.00001	-0.00002
475988.6132	7.9993	7.9993	-0.00003	-0.00000
411364.5191	11.5013	11.5013	-0.00001	0.00006
356570.8333	14.9962	14.9962	-0.00009	-0.00001
309816.6856	18.4974	18.4974	-0.00012	-0.00006
269921.2202	21.9969	21.9968	0.00001	0.00003
235773.4779	25.4961	25.4962	0.00001	-0.00001
206474.8573	28.9949	28.9949	0.00005	0.00002
181267.4388	32.4938	32.4938	-0.00008	-0.00001

SENSOR SERIAL NUMBER: 0011

CALIBRATION DATE: 18-Jun-2013 Mfg: SEABIRD Model: 35 Previous cal: 07-Dec-12 Calibration Tech: CAL

ITS-90_COEFFICIENTS							
a0 = 4.943006005E-3							
a1 = -1.360822866E-3							
a2 = 2.010795666E-4							
a3 = -1.114346435E-5							
a4 = 2.364998519E-7							
Slope = 1.000000 Offset = 0.000000							
Calibration Standard:	Mfg: ASL	Model: F18	s/n: 245-5149				
Calibration Standard:	Mfg: ASL	Model: F18	s/n: 245-5149				

Temperature ITS-90 = 1/{a0+a1[ln(f)]+a2[ln2(f)]+a3[ln3(f)]+a4[ln4(f)} - 273.15 (°C)

SBE35 Count	SPRT ITS-T90	SBE35 ITS-T90	SPRT-SBE35 OLD_Coefs	SPRT-SBE35 NEW_Coefs
790244.8256	-1.5025	-1.5025	-0.00000	-0.00000
707510.8124	0.9977	0.9977	-0.00001	-0.00000
607389.7035	4.4985	4.4984	0.00001	0.00001
522826.4216	7.9993	7.9993	0.00004	0.00001
451217.9235	11.5013	11.5014	0.00001	-0.00005
390577.8366	14.9962	14.9961	0.00012	0.00004
338895.6623	18.4974	18.4974	0.00011	0.00001
294848.4583	21.9969	21.9969	0.00007	-0.00003
257197.2567	25.4961	25.4961	0.00013	0.00001
224932.8734	28.9949	28.9949	0.00014	0.00000
197209.9015	32.4938	32.4938	0.00019	-0.00000

PO Box 518 620 Applegate St. Philomath, OR 97370

C-Star Calibration

Date	September 13, 2013	S/N#	CST-400DR	Pathlength 25 cm
V _d V _{air} V _{ref}			Analog output 0.060 V 4.773 V 4.658 V	
Tempe Ambie	erature of calibration wate ont temperature during ca	er libration		22.0 °C 22.6 °C

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x, in meters): $Tr = e^{-cx}$

To determine beam transmittance: Tr = (V_{sig} - V_{dark}) / (V_{ref} - V_{dark})

To determine beam attenuation coefficient: **c** = -1/x * In (Tr)

V_d Meter output with the beam blocked. This is the offset.

V_{air} Meter output in air with a clear beam path.

V_{ref} Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain V_{ref}.

Ambient temperature: meter temperature in air during the calibration.

V_{sig} Measured signal output of meter.

	Transmiss	Transmissometer Air Calibration M&B Calculator						
STS	13 Nov. 2013	CST-400DR						
Readings	Sheet Info		Avg. Value					
Air	4.773		4.742	4.743	4.743	4.743		
Water	4.685					N/A		
Blocked	0.060		0.055	0.055	0.055	0.055		
Air Temp.	18.801	18.792	18.797	18.795	18.800	18.792		
M	19.608		Air	Temp. Avera	age	18.796		
В	-1.078							
	Transmiss	ometer Air	Calibratior	n M&B Calc	ulator			
STS	13 Nov. 2013			CST-400D	R			
Readings	Factory Cal Sheet Info		AVG D	eck/Lab Re	adings	Avg. Value		
Air	4.773			4.741				
Water	4.658			N/A				
Blocked	0.06			0.055				
Air Temp.	20.346	20.360	20.370	20.368	20.372	20.377		
М	19.730		Air	Temp. Avera	age	20.366		
В	-1.085							
	Transmiss	ometer Air	Calibratior	n M&B Calc	ulator			
STS	24 Nov. 2013			CST-400D	R			
Doodings	Factory Cal			ock/Lab Do	adinas	Avg.		
Reaulitys	Sheet Info		AVG D		aunys	Value		
Air	4.773		4.740	4.737	4.739	4.739		
Water	4.685					N/A		
Blocked	0.060		0.055	0.055	0.055	0.055		
Air Temp.	23.707	23.682	23.621	23.785	23.677	23.680		
M	19.625		Air	Temp. Avera	age	23.692		
В	-1.079							
	Transmiss	ometer Air	Calibratior	n M&B Calc	ulator			
STS	06 Dec. 2013			CST-400D	R			
Readings	Factory Cal Sheet Info		AVG D	eck/Lab Re	adings	Avg. Value		
Air	4.773		4.737	4.737	4.737	4.737		
Water	4.685					N/A		
Blocked	0.060		0.055	0.055	0.055	0.055		
Air Temp.	27.314	27.329	27.347	27.360	27.362	27.347		
М	19.632		Air	Temp. Avera	age	27.343		
В	-1.080							
	Transmiss	ometer Air	Calibratior	n M&B Calc	ulator			
STS	18 Dec. 2013			CST-400D	R			
Readings	Factory Cal Sheet Info		AVG D	eck/Lab Re	adings	Avg. Value		
Air	4.773		4.730	4.730	4.727	4.729		
Water	4.685					N/A		
Blocked	0.060		0.055	0.055	0.055	0.055		
Air Temp.	30.160	30.157	30.217	30.302	30.218	30.220		
М	19.665		Air	Temp. Avera	age	30.212		
В	-1.082							