
Supplemental Methods 

Satellite measurements 

Monthly and eight day average estimates for surface chlorophyll a concentration and surface 

productivity were downloaded from the Coastwatch browser website. The chlorophyll-a measurements 

were from the data categories “Chlorophyll a, SeaWiFS, 0.04167 degrees, West US Science Quality + 

Chlorophyll-a” and “Chlorophyll-a, Aqua MODIS NPP, 0.05 DEGREES, Global, Science Quality”. 

Productivity was extracted from the categories “Primary Productivity, SeaWiFS and Pathfinder, 

0.1degrees, Global, EXPERIMENTAL” and “Primary Productivity, NASA Aqua MODIS and 

Pathfinder, 0.1 degrees, Global, EXPERIMENTAL” (Behrenfeld & Falkowski 1997). Data from 

SeaWiFS and MODIS together spanned our data set, with overlap in the middle. In cases where the 

data overlapped, we gave priority to the MODIS data. 

Surface eight day averages of photosynthetically active radiation (PAR) (Frouin et al. 2003), colored 

dissolved organic matter to chlorophyll a ratio (CDOM) (Mannino et al. 2008) and particulate organic 

carbon concentrations (Morel & Gentili 2009) were downloaded from the ocean color data site.  A 3x3 

grid of pixels was extracted from around SPOT using the SeaDas program (Fu et al. 1998), and the 

weighted average (using weights from the SeaDas output) of this grid was used in downstream 

analysis. Monthly sea surface height differential was downloaded from Coastwatch as “Sea Surface 

Height Deviation, Aviso, 0.25 degrees, Global, Science Quality” (Ducet et al. 2000). 

We obtained meteorological data, including minimum and maximum daily air temperatures and 

precipitation data from the weather station at nearby Avalon airport (33.405°N 118.415°W).  Wave 

height, average wave period, and dominant wave period from a buoy in nearby Santa Monica Bay 

(33.749°N, 119.053°W) were downloaded from the National Buoy Data Center.  Pacific Fisheries and 

Environmental Laboratory (PFEL) estimates of coastal upwelling, and Sverdrup transport at (33°N, 

119°W), along with Multivariate ENSO Index scores were downloaded from the National 

Oceanographic and Atmospheric Administration (NOAA).  

Assigning Taxonomic Identities to ARISA peaks 

We assigned taxonomic identity to each ARISA fragment size by identifying which clones from our 

clone libraries had fragment sizes that fell within the range of peak sizes that were assigned to an 

ARISA OTU bin.  In cases in which an ARISA OTU corresponded in size to more than one clone in 



our clone library database, we prioritized our clones based on where they were isolated. For fragments 

that were more abundant in surface waters than at 890m, we prioritized fragments according to the first 

number in parentheses, while fragments that were more abundant at 890m than 5m we prioritized 

according to the second number in parentheses:  

(1;3) observed ARISA length of SPOT clones from 5m across all seasons (2;2) SPOT clones from 

150m (3;1) SPOT clones from 890m (4;5) Clones from the Pacific Ocean (near Hawaii) and Atlantic 

Ocean (near the Amazon river outfall) from 5m. (5;7) published cyanobacterial intergenic spacer (ITS) 

sequences (6;6) observed ARISA lengths from 16S-ITS clones from surface waters of the Indian 

Ocean: (7;9) in silico amplification of marine isolate genomes from the photic zone(8;4) Clones from 

the Pacific and Atlantic oceans from 500m and below (9;8) in silico amplification of marine isolate 

genomes from below the photic zone. Chow et al (2013) provide a full description about these datasets 

and how they were used to assign identity to ARISA OTUs. 

In cases in which more than one clone from the highest priority category fell into a given bin, we 

selected the clone that had the highest number of instances in our clone libraries. 

Environmental parameter variability 

We tested for seasonal variability of each measured environmental parameter by applying generalized 

additive mixed effects models (Wood 2004, 2006). Each variable was modelled according to the 

equation 

y = μ + m1(time) + m2(DoY) + ε 

In this equation “y” is the transformed (for normalization purposes) value of the environmental 

parameter. m1(time) is a univariate smooth thin plate regression spline modelling long term variability 

as a function of the number of days that had elapsed since the beginning of the study. m2(DoY) (Day of 

Year) is a cyclic penalized cubic regression smooth spline of one year period. μ is essentially the mean 

of y, and the m1 and m2 functions describe how y deviates from this mean over time. ε is the error term. 

The model was set up to allow for the data to have a continuous lag-1 autoregressive structure. This 

model reflects equation 1 in Ferguson et al. (2008) as well as approaches demonstrated elsewhere 

(Wood 2006, 321–324) and identifies seasonal variability that is not perfectly sinusoidal as well as long 

term trends that are non-linear. The model was run using the “gamm” function of the “mgcv” R-

package (Wood 2011). 



For both the seasonal and long term spline function we determined the model’s estimated degrees of 

freedom (EDF) which is essentially a measure of the complexity of the spline. For instance, seasonal 

splines of EDF of 1 are perfectly sinusoidal while higher EDF relate to unevenly shaped seasonal peaks 

or local maxima. Long term splines with EDF of 1 are linear, while higher EDF correspond to curved 

long term splines which may have maximum and minimum values at years within (rather than at the 

extremes of) the dataset. We also determined p-values for both the seasonal and long term splines, 

where P is the probability of the null hypothesis that the EDF of the smooth term is actually zero (no 

prediction by that spline). R2 values for the entire model were also determined. 

For each fitted nonparametric regression model, we interrogated the cyclic seasonal spline to determine 

the month in which that factor had the highest value and the month in which that factor had the lowest 

value. We interrogated the long-term spline function to determine whether there appeared to be a linear 

on non-linear change over time and identified the years that appeared to have the highest and lowest 

values. 

To test whether each variable appeared to relate to the Multivariate El-Niño Southern Oscillation Index 

(MEI) a second GAMM model using MEI instead of year as a predictor variable for the long term 

spline was fit to each variable. Thus this model was of the form y = μ + m1(MEI) + m2(DoY) + ε. We 

determined the Akaike information criterion (AIC) of both the original (Year) and modified (MEI) 

GAMM models. In cases where the second model had a lower AIC than the former, and in which p-

values suggested the m1(MEI) model had good fit we would say that the variable seemed to be driven 

by variability in MEI. 

Seasonal variability of microbial community structure  

Graphical approach 

We used the “vegdist” function in the “vegan” (Oksanen et al. 2011) package to estimate Bray-Curtis 

dissimilarity in community structure between all pairs of samples in the dataset, thereby generating a 

dissimilarity matrix; we calculated similarity matrix by subtracting the dissimilarity scores from one. 

We determined upper and lower bounds for these similarity scores by examining similarity scores 

between machine replicates (upper bounds) and randomized samples (lower bounds). Machine 

replicates were identical samples run on different fragment analysis gel lanes. We determined the 

machine replicate similarity for every sample in the data set and calculated average machine replicate 

similarity. Similarities between randomized samples were determined by arbitrarily picking pairs of 



samples and then shuffling the orders of the abundances of each OTU. This process was repeated 1000 

times and the average value of similarity between randomized samples was recorded. 

We determined the temporal difference or lags, in days, between all pairs of samples and the Bray-

Curtis similarity between those same pairs of samples. Pairs of samples were binned by their lags in by 

30.416 day (the average number of days in a month) intervals and average similarity for pairs of 

samples in each monthly bin was determined. Accordingly our first bin returned the average Bray-

Curtis similarity value for all samples collected between 15 and 45 days apart, the next bin returned the 

average for all samples between 46 and 76 days apart and so forth. Bray-Curtis similarity scores that 

oscillated with a period of one year were considered seasonal. A t-test was applied to ask whether 

samples that were taken one month (15 to 45 days) apart were statistically more similar than samples 

taken six months apart. 

Mantel test approach 

Mantel tests were applied to look for seasonality using a ‘seasonal difference matrix’ (S). S was 

calculated as follows: “D”, a matrix of the difference in serial days between each pair of samples was 

calculated. 2) “DM”, a matrix containing the 365.25 day modulus of each value in D was calculated. 

“S” was calculated from each value of DM such that if the value was less than 180.625 it was kept and 

if greater the value was subtracted from 365.25 and the difference was kept. These ‘seasonal difference 

matrixes’ were compared to the community’s Bray-Curtis dissimilarity matrix using the “mantel” 

function in the “ecodist” package for R (Goslee & Urban 2007). Depths where the seasonal matrix 

significantly correlated to the Bray-Curtis dissimilarity matrix were said to be seasonal. 

Interannual variability of microbial community structure 

We binned samples by 365.25 day (the average number of days in a year) intervals and applied the 

same analysis described previously. Thus the first bin would contain the mean of all samples taken 

between 1 month and 12 months apart, the second all samples taken between 13 and 24 months apart 

and so on. For each depth we performed ANOVA to ask whether the mean similarity between samples 

within each bin differed between those bins. In cases in which the ANOVA suggested statistically 

significant differences, we performed a Tukey corrected t-test for each pair of bin categories to 

determine which bins had statistically different mean similarity scores. As for the seasonality 

comparison, we performed Mantel tests to examine the relationship between difference in serial day 

(“D” as calculated above) and community dissimilarity. Depths in which samples that were more 



temporally distant had higher Bray-Curtis dissimilarity scores would be said to show long term change 

in community structure. 

Alpha diversity 

Variability between depths 

Mean values of Richness of species with greater than 1% 0.1% and 0.01% relative abundance, inverse 

Simpson index (ISI), Shannon indexes of biodiversity and Pelou’s index of evenness were determined 

at each depth along with 95% confidence intervals of those means. We investigated whether richness at 

0.1% and ISI differed between depths using analysis of variance (“AOV” function in the R's “stats” 

package). A Tukey corrected t-test compared all pairs of depths in order to determine which pairs of 

depths have different mean richness and ISI.  

Relation to season  

Richness and ISI were investigated with the same nonparametric regression model used to investigate 

seasonality. Seasonal and long term spline functions were investigated and depths with seasonal and 

long term trends were noted. We identified months and years of highest and lowest biodiversity and 

parameters for the splines used to fit these data. 

Relation to community similarity between depths 

We examined, for each depth, whether richness and/or ISI was correlated with the similarity of that 

depths community structure to the community structure at each other depth. Our goal was to identify 

whether biodiversity at each depth was driven by influence of OTUs from other depths. 

Inter-depth community similarity was determined for each pair of depths as the Bray-Curtis similarity 

between those depths’ communities in a given month. Scatterplots of richness vs inter-depth similarity 

and ISI vs inter-depth similarity were visually investigated to determine whether simple correlations 

were sufficient to describe relationships between the factors. After determining that no non-linear 

relationships were present, Pearson correlation tests were applied to determine whether richness and/or 

ISI at each depth was statistically correlated with the inter-depth community similarity between that 

depth and each other depth. R values of the Pearson correlations and the 95% confidence intervals of 

those R values were identified for each comparison. Relationships whose and confidence intervals did 

not overlap zero were identified as having a statistically significant relation between inter-depth 

community similarity and biodiversity. 



Relation to community change 

We queried whether alpha diversity was higher for communities that were changing the most rapidly. 

To calculate the rate of community change, we compared the Bray Curtis dissimilarity of each month to 

the community in the previously sampled month and refer to this dissimilarity score henceforth as 

“Bray-Curtis shift (BCS)”. As in the inter-depth similarity analysis, scatterplots of BCS vs Richness 

and BCS vs ISI at each depth were investigated for non-linear relationships. After determining that no 

parabolic relationships were present, Pearson correlation tests were applied to determine whether BCS 

was statistically significantly related to richness and Simpson’s index at each depth. R values of the 

Pearson correlations and the 95% confidence intervals of those R values were identified and depths 

with confidence intervals not overlapping zero were identified as having a statistically significant 

relation between community change and biodiversity. 

Environmental parameters and community structure: Mantel tests 

We applied partial Mantel tests that examine the model Y = a +bS + cD +dX where Y is the Bray Curtis 

similarity matrix of the community structure, S is the seasonal distance matrix, D is the serial day 

distance matrix (S and D are described above), and X is the similarity matrix for the variable of 

interest. Our environmental data set was missing values for a few environmental variables. Because 

Mantel tests are not able to handle missing data, we filled in our data set using multiple imputation, a 

method which fills in missing values with numbers that are reasonable estimates but reflect the 

uncertainty of the data (King et al. 2001). We generated 25 imputed data sets using the “Amelia” R-

package (Honaker et al. 2006; Honaker & King 2010) and performed the Mantel test, using the 

“ecodist” R-package (Goslee & Urban 2007), on each of these imputed data sets. We then report the 

median rho score of the 25 Mantel tests, and the p-value corresponding to this median rho score. 

Because we ran many tests in parallel, in addition to calculating p-values for each environmental 

parameter, we also estimated the false discovery rate “Q” from the p-values at each depth using the 

“qvalue” R-package (Dabney et al. 2004). 

Temporal dynamics of microbial taxa over time 

Transformations 

Taxonomic groups and individual OTUs were log of odds transformed using the “logit” function, in the 

“car” R-package (Fox and Weisberg, 2011), with an adjustment factor of 0.001. 



Taxonomic Groups 

We examined seasonality and long term temporal variability of class level taxonomic groups, more 

abundant order and family level taxonomic groups, each of the sub clades of SAR11, all of the OTUs 

of SAR11 Surface group 1, clades of Flavobacteria and genera of Marine group A. To investigate these 

temporal dynamics we attempted to fit the group’s log-odds transformed abundance (Y’) using the 

same nonparametric model used to fit the environmental variables. For each OTU, months and years of 

both maximal and minimal abundance, estimated degrees of freedom of each spline term and p-values 

for each spline term were generated. We report all taxonomic groups which were fit by this model with 

an R^2 value greater than 0.10. False discovery rates (Q) were calculated from the p-values of each 

category of taxa investigated. 

OTUs 

The previously described nonparametric regression model was also applied to each of the 100 most 

abundant OTUs (where Y’ is the transformed relative abundance of the OTU under investigation). We 

recorded the number of bacteria, out of 100 that were fit with R^2 values of 0.1 and 0.2. Of these 

bacteria, we determined which were fit by the seasonal spline with a p-value of less than 0.05 and 

which were fit by the long-term spline with a p-value less than 0.05. To determine if the fraction of 

seasonally variable and interannually variable bacteria (seasonal term P < 0.05, R2 > 0.2) differed 

between depths, we applied the “chisq.test” function in R. We recorded the taxonomic identity, ARISA 

fragment length and statistics for each temporally variable OTU that was fit by the model with an R^2 

value of greater than 0.2. 
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